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1 Bessel Fun
tions

In a stri
tly logi
al approa
h we should perhaps, at this stage, begin on a detailed study of

the Hypergeometri
 Equation, and its solutions, sin
e this equation en
ompasses as spe
ial


ases many of those that one en
ounters in physi
s. However, su
h a presentation would

run the risk of being rather dry and abstra
t. Instead, we shall adopt the approa
h of

beginning with the Bessel equation, and its solutions. In parti
ular, we shall see how to use

the methods of 
omplex analysis in order to determine properties of the solutions. Many

of the methods that we use will be generalisable later to other examples, in
luding the

hypergeometri
 equation.

As we saw in part I of the 
ourse, Bessel's equation arises when one uses the method of

separation of variables to solve an equation su
h as Lapla
e's equation in 
ylindri
al polar


oordinates. Spe
i�
ally, it is the radial fun
tions that satisfy the Bessel equation. After

appropriate 
hanges of variable, this equation 
an be 
ast in the form

z

2

y

00

+ z y

0

+ (z

2

� �

2

) y = 0 ; (1.1)

where y is a fun
tion of z, and � is a 
onstant whi
h may be integer on non-integer.

1.1 J

n

(z) Bessel Fun
tion of Integer Order n

Consider �rst the 
ase when � = n, where n is an integer (whi
h 
an be positive, negative

or zero). We 
an give the following 
onstru
tion of the Bessel fun
tion J

n

(z), whi
h satis�es

(1.1) with � = n. We de�ne J

n

(z) by means of the expansion

e

1

2

z(t�t

�1

)

=

1

X

n=�1

t

n

J

n

(z) : (1.2)

This is known as a generating fun
tion for the Bessel fun
tions. In prin
iple one 
ould

expand the left-hand side as a Laurent series in t, and by pi
king out all the terms propor-

tional to t

n

, one reads o� the 
orresponding Bessel fun
tion J

n

(z). Of 
ourse there will be

in�nitely many terms in this expansion, sin
e ea
h power (t� t

�1

)

N

in the Taylor expansion

of e

1

2

z(t�t

�1

)


ontains all powers of t from t

�N

to t

N

.

Let us begin by verifying that (1.2) does indeed give us a 
onstru
tion of solutions of

the Bessel equation. Thus we wish to verify that J

n

(z) de�ned by (1.2) does indeed satisfy

z

2

J

00

n

+ z J

0

n

+ (z

2

� n

2

)J

n

= 0 : (1.3)

3



To do this, 
onsider

1

X

n=�1

�

z

2

J

00

n

+ z J

0

n

+ (z

2

� n

2

)J

n

�

t

n

=

1

X

n=�1

�

z

2

d

2

dz

2

+ z

d

dz

+ z

2

� t

d

dt

t

d

dt

�

t

n

J

n

=

�

z

2

d

2

dz

2

+ z

d

dz

+ z

2

� t

d

dt

t

d

dt

�

e

1

2

z(t�t

�1

)

;

=

�

1

4

z

2

(t� t

�1

)

2

+

1

2

z (t� t

�1

) + z

2

�

1

4

z t

�2

(�2t+ 2t

3

+ z + 2z t

2

+ z t

4

)

�

e

1

2

z(t�t

�1

)

= 0 : (1.4)

Note that in the �rst line, we have used the fa
t that n

2

t

n


an be written as t(d=dt)t(d=dt) t

n

.

The next step is to observe that (1.2) 
an be turned into an expression for a single

Bessel fun
tion, say J

m

(z). All we need to do is to multiply (1.2) by t

�m�1

, and integrate

it around a 
losed 
ontour C en
ir
ling the origin. By the theorem of residues, we have

1

2� i

I

C

t

n�m�1

dt = Æ

mn

; (1.5)

where the Krone
ker delta fun
tion Æ

mn

as usual has the meaning that Æ

mn

= 0 unless

m = n, for whi
h Æ

mm

= 1. Thus from (1.2) we obtain the result that

J

n

(z) =

1

2� i

I

C

t

�n�1

e

1

2

z(t�t

�1

)

dt ; (1.6)

where C is a 
losed 
ontour that en
ir
les the origin anti
lo
kwise. We 
an, for example,

take C to be C

0

, the unit 
ir
le, jtj = 1. This has furnished us with an integral representation

for the Bessel fun
tion J

n

(z). It is evident that it is analyti
 for all z in the �nite 
omplex

plane. The J

n

fun
tions are sometimes 
alled Bessel Fun
tions of the First Kind. For now,

we are assuming that n is an integer.

We 
an express J

n

(z) as a power series in z in the following way. Introdu
e a new

integration variable w, de�ned by t = 2w=z; then

J

n

(z) =

1

2� i

�

1

2

z

�

n

I

C

w

�n�1

e

w�

1

4

z

2

w

�1

dw ; (1.7)

where again we may take the integration 
ontour to be the unit 
ir
le, jwj = 1. The fa
tor

e

�

1

4

z

2

w

�1


an be expanded in a power series,

e

�

1

4

z

2

w

�1

=

1

X

r=0

(�1)

r

r!

�

1

2

z

�

2r

w

�r

; (1.8)

sin
e this is uniformly 
onvergent on the 
ir
le jwj = 1. Thus we obtain

J

n

(z) =

1

2� i

1

X

r=0

(�1)

r

r!

�

1

2

z

�

n+2r

I

C

w

�n�r�1

e

w

dw : (1.9)
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As we saw in part I of the 
ourse, the residue R at an N 'th-order pole z = z

0

of a fun
tion

f(z) is

R =

1

(N � 1)!

h

d

N�1

dz

N�1

�

(z � z

0

)

N

f(z)

�i

z=z

0

: (1.10)

Therefore the residue of the integrand in (1.9) at w = 0 is given by di�erentiating e

w

(n+r)

times, setting w = 0, and dividing by (n + r)!, when n + r is a positive integer or zero.

When n+r is a negative integer (re
all that n 
an be positive, negative or zero), the residue

is zero.

Consequently, we �nd that if n is a positive integer or zero, (1.9) gives

J

n

(z) =

1

X

r=0

(�1)

r

�

1

2

z

�

n+2r

r! (n+ r)!

: (1.11)

On the other hand if n is a negative integer, n = �m, then

J

n

(z) =

1

X

r=m

(�1)

r

�

1

2

z

�

2r�m

r! (r �m)!

=

1

X

s=0

(�1)

m+s

�

1

2

z

�

m+2s

s! (m+ s)!

; (1.12)

where we set r = m+s in the se
ond summation. Evidently, therefore, we have the relation

J

�n

(z) = (�1)

n

J

n

(z) ; (1.13)

where n is any integer.

Noti
e that by having a variety of ways of representing the Bessel fun
tions available in

the armoury, we 
an pi
k whi
hever is most 
onvenient for proving a parti
ular result. In

fa
t the property (1.13) 
an be seen very easily dire
tly from (1.2). If we send t �! �1=t

then the e�e
t on the right-hand side is to send J

n

(z) �! (�1)

n

J

�n

(z), while the left-hand

side is left un
hanged.

Bessel fun
tions have many properties that are analogous to those of trigonometri


fun
tions. Re
all, for example, the addition formulae su
h as sin(x + y) = sinx 
os y +


os x sin y. The analogue for the J

n

Bessel fun
tions is

J

n

(x+ y) =

1

X

m=�1

J

m

(x)J

n�m

(y) : (1.14)

We 
an again prove this very easily from the generating fun
tion (1.2). We simply observe

that from the elementary properties of the exponential fun
tion, it follows that

e

1

2

(x+y)(t�t

�1

)

= e

1

2

x (t�t

�1

)

e

1

2

y (t�t

�1

)

: (1.15)

From (1.2) this implies

1

X

n=�1

t

n

J

n

(x+ y) =

�

1

X

p=�1

t

p

J

p

(x)

��

1

X

q=�1

t

q

J

q

(y)

�

: (1.16)
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Pi
king out all the terms asso
iated with p+ q = n in the right-hand side, and equating to

the term in t

n

on the left-hand side, equation (1.14) follows.

Another integral representation for the Bessel fun
tion J

n

(z) may be obtained as follows.

Starting from (1.6), we may write the 
omplex integration variable t, whi
h is taken to run

around the unit 
ir
le, as t = e

i �

. Thus we get

J

n

(z) =

1

2�

Z

�

��

e

�in�+i z sin �

d�: (1.17)

By dividing the integration range into two pie
es, namely �� � � � 0 and 0 � � � �, and

then sending � �! �� in the �rst of these, we get

J

n

(z) =

1

2�

Z

�

0

e

in ��i z sin �

d� +

1

2�

Z

�

0

e

�in�+i z sin �

d� ; (1.18)

and hen
e we arrive at the expression, known as Bessel's integral for J

n

(z):

J

n

(z) =

1

�

Z

�

0


os(n � � z sin �) d� : (1.19)

To give some idea of what the Bessel fun
tions J

n

(z) look like, we give plots below, in

Figures 1, 2, 3 and 4, for J

0

(z), J

1

(z), J

5

(z) and J

10

(z). Like the trigonometri
 fun
tions

they are os
illatory, although they are not periodi
 as su
h sin
e the interval between

su

essive zeros 
hanges with z. As we shall see later, at large z they do asymptoti
ally

approa
h a de�nite period. It is also evident that their magnitudes fall o�, in a rather mild

way, as z in
reases.

5 10 15 20 25 30

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Figure 1: The J

0

(z) Bessel Fun
tion
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5 10 15 20 25 30
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0.2

0.4

0.6

Figure 2: The J

1

(z) Bessel Fun
tion

5 10 15 20 25 30

-0.2

-0.1

0.1

0.2

0.3

Figure 3: The J

5

(z) Bessel Fun
tion

1.2 J

�

(z) Bessel Fun
tion of Non-integer Order �

Until now, we have been assuming that the order n of J

n

(z) is an integer. Staying with this

assumption for just a moment longer, we may note from the integral representation (1.7)

that we 
an dire
tly substitute it into the Bessel equation (1.3), to obtain

J

00

n

+

1

z

J

0

n

+

�

1�

n

2

z

2

�

J

n

=

1

2� i

�

1

2

z

�

n

I

C

w

�n�1

h

1�

n+ 1

w

+

z

2

4w

2

i

e

w�

1

4

z

2

w

�1

dw ;

= �

1

2� i

�

1

2

z

�

n

I

C

d

dw

h

w

�n�1

e

w�

1

4

z

2

w

�1

i

dw ;

= 0 : (1.20)

This last step follows from the fa
t that w

�n�1

e

w�

1

4

z

2

w

�1

is single valued, and so it returns

to its original value after 
ompleting the trip around the 
losed 
ontour C, whi
h was taken

to be the unit 
ir
le C

0

. This gives a dire
t proof that the integral repsesentation (1.7) for
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-0.2

-0.1

0.1

0.2

0.3

Figure 4: The J

10

(z) Bessel Fun
tion

the Bessel fun
tion of integral order satis�es Bessel's equation.

Now, a straightforward modi�
ation allows us to adopt (1.7) as an integral representation

for the Bessel fun
tion J

�

(z), where now � is not restri
ted to being an integer. It is evident

that a manipulation identi
al to (1.20) 
an be 
arried out for J

�

(z) de�ned by

J

�

(z) =

z

�

2

�+1

� i

Z

C

w

���1

e

w�

1

4

z

2

w

�1

dw ; (1.21)

provided that we make an appropriate di�erent 
hoi
e for the 
ontour C. (We shall keep

the same symbol C, but it will now mean something di�erent.) Thus we substitute (1.21)

into (1.1), dedu
ing that J

�

(z) does indeed satisfy this equation as long as

Z

C

d

dw

h

w

���1

e

w�

1

4

z

2

w

�1

i

dw = 0 : (1.22)

This will be true provided that the quantity

w

���1

e

w�

1

4

z

2

w

�1

(1.23)

returns to its initial value after following round from the beginning to the end of the path

des
ribed by C. Clearly, when � is not an integer, we 
annot take C to be the unit 
ir
le

any more. Instead, we 
an take C to be very like the Hankel 
ontour that we used in part

I of the 
ourse, only now re
e
ted a
ross the imaginary axis. Thus we take a 
ontour that

starts at �1 just below the real axis, loops anti
lo
kwise around the origin, and exits to the

west again just above the real axis; see Figure 7 below . At both the starting and �nishing

points, therefore, the real part of w is �1, and so the e

w

fa
tor ensures that (1.23) vanishes

at both ends. To be pre
ise, we take jargwj � � on the 
ontour.
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Figure 5: The 
ontour of integration for the integral (1.21) for J

�

(z)

This integral representation for J

�

(z) 
an be expressed as a power series. We may note

that the integral itself in (1.21) de�nes an analyti
 fun
tion z, and so it must admit a

Taylor expansion. In fa
t, the integral has a series expansion in powers of q � z

2

, whi
h 
an

be obtained by di�erentiating under the integral sign, to 
onstru
t the Taylor expansion.

De�nining

h(q) �

Z

C

w

���1

e

w�

1

4

q w

�1

dw ; (1.24)

we 
onstru
t the series expansion

h(q) = h(0) + q h

0

(0) +

1

2

q

2

h

00

(0) +

1

6

q

3

h

000

(0) + � � � =

1

X

r=0

q

r

r!

h

(r)

(0) ;

=

1

X

r=0

(�q)

r

4

r

r!

Z

C

w

���r�1

e

w

dw ;

= 2� i

1

X

r=0

(�q)

r

4

r

r! �(� + r + 1)

: (1.25)

This last result 
omes from the 
ontour-integral expression for the Gamma fun
tion that

we derived in part I of the 
ourse, namely

1

�(z)

= �

1

2� i

Z




e

�t

(�t)

�z

dt ; (1.26)

where 
 denotes the Hankel 
ontour, whi
h runs from +1 just above the real axis, swings

in around the origin, and goes out east again just below the real axis. (This is just the

9



re
e
tion of our 
urrent 
ontour C a
ross the imaginary axis.) Thus we arrive at the result

that J

�

(z) has the series expansion

J

�

(z) =

1

X

r=0

(�1)

r

z

�+2r

2

�+2r

r! �(� + r + 1)

: (1.27)

It is easy to see that this expansion agrees with the one that we derived in (1.11), in the


ase that � is a non-negative integer. It also 
oin
ides with (1.12) in the 
ase that � is a

negative integer. In general, for arbitrary � we take (1.21) as the integral representation

de�ning J

�

(z), and (1.27) as the series representation for J

�

(z).

Noti
e that sin
e J

�

(z) satis�es Bessel's equation (1.1), and this equation is invariant

under sending � �! ��, it follows that J

�

(z) and J

��

(z) generi
ally give us the two linearly-

independent solutions of the Bessel equation. This argument would break down, of 
ourse,

if it were the 
ase that J

��

(z) were simply a 
onstant multiple of J

�

(z). We know that this

is pre
isely what does happen if � is an integer, sin
e then we have the relation (1.13) whi
h

tells us that J

�n

(z) = (�1)

n

J

n

(z). This is, however, a pe
uliarity of integer values for �.

When � 6= integer, it is 
lear from (1.27) that J

��

(z) 
annot be a 
onstant multiple of

J

�

(z). (The powers of z in the expansions of J

�

(z) and J

��

(z) will be 
ompletely di�erent.)

Thus when � 6= integer, the general solution of the Bessel equation (1.1) is given by

�J

�

(z) + � J

��

(z) ; (1.28)

where � and � are 
onstants. We shall see later how to obtain the se
ond independent

solution to (1.1) when � is an integer.

Here are a 
ouple of sample plots of Bessel fun
tions J

�

(z) with non-integer order �.

We present the 
ases � =

1

3

and � = �

1

3

, in Figures 5 and 6 below.

We may generalise the Bessel integral (1.19) for the integer-order Bessel fun
tions to the


ase where the order is non-integral. First, we note that by performing the transformation

w =

1

2

z t, we 
an 
ast the integral representation (1.21) into the form

J

�

(z) =

1

2� i

Z

C

t

���1

e

1

2

z(t�t

�1

)

dt : (1.29)

This will be an analyti
 fun
tion of z provided that Re(z t) is negative when t heads of

to �1 at the beginning and end of the 
ontour. We shall deform the 
ontour so that it


onsists of a line running from �1 to �1 just below the real axis, then a unit 
ir
le running

anti
lo
kwise around the origin, and �nally a line running from �1 to �1 just above the

10
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Figure 6: The J
1

3

(z) Bessel Fun
tion

5 10 15 20 25 30

-0.4

-0.2

0.2

0.4

0.6

0.8

Figure 7: The J

�

1

3

(z) Bessel Fun
tion

real axis. (See Figure 8 below.) Initially we shall take z to be real and positive, but by

analyti
 
ontinuation we may then allow z to be any 
omplex number with Re(z) > 0.

The part of the 
ontour 
omprising the unit 
ir
le 
an be handled pre
isely as in the


ase of the integer-order result (1.19). The two line integrals give additional 
ontributions

h

e

(�+1) � i

2� i

�

e

�(�+1) � i

2� i

i

Z

1

1

x

���1

e

1

2

z(�x+x

�1

)

dx ; (1.30)

where we have written t = e

�i�

x for the ingoing and outgoing pie
es respe
tively. Thus

writing x = e

�

, we arrive at the result, due to S
hl�a
i, that

J

�

(z) =

1

�

Z

�

0


os(� � � z sin �) d� �

sin ��

�

Z

1

0

e

�� ��z sinh �

d� : (1.31)
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Figure 8: The deformed 
ontour for deriving S
hl�a
i's integral

Noti
e that in the spe
ial 
ase where � is an integer, this redu
es immediately to the previous

result (1.19).

1.3 Re
urren
e Formulae for the Bessel Fun
tions

Noti
e that from the integral representation (1.21) for the Bessel fun
tion J

�

(z), we 
an

derive a simple expression for obtaining J

�+1

(z) in terms of J

�

(z). To do this, multiply

(1.21) by z

��

and di�erentiate with respe
t to z, to get

d

dz

�

z

��

J

�

(z)

�

=

1

2

�+1

� i

d

dz

Z

C

w

���1

e

w�

1

4

z

2

w

�1

dw ;

= �

z

2

�+2

� i

Z

C

w

���2

e

w�

1

4

z

2

w

�1

dw ;

= �z

��

J

�+1

(z) : (1.32)

In other words, we have

J

�+1

(z) = �z

�

d

dz

�

z

��

J

�

(z)

�

; (1.33)

whi
h 
an trivially be written also as

J

�+1

(z) = �z

�+1

d

z dz

�

z

��

J

�

(z)

�

; (1.34)

12



Iterating (1.34) on
e, we get

J

�+2

(z) = �z

�+2

d

z dz

�

z

��

J

�+1

(z)

�

= z

�+2

d

z dz

�

d

z dz

�

z

��

J

�

(z)

��

: (1.35)

Clearly we 
an repeat this as many times as we wish, to obtain the re
urren
e formula

J

�+r

(z) = (�1)

r

z

�+r

h

d

z dz

i

r

�

z

��

J

�

(z)

�

; (1.36)

where r is any non-negative integer.

Another re
urren
e formula 
an be obtained by 
onsidering J

�+1

(z) + J

��1

(z), whi
h,

from (1.21), 
an be written as

J

�+1

(z) + J

��1

(z) =

z

�

2

�+1

� i

Z

C

(

1

2

z w

�1

+ 2w z

�1

)w

���1

e

w�

1

4

z

2

w

�1

dw ;

=

2

z

z

�

2

�+1

� i

Z

C

w

��

�

1 +

z

2

4w

2

�

e

w�

1

4

z

2

w

�1

dw ;

=

2

z

z

�

2

�+1

� i

Z

C

w

��

d

dw

e

w�

1

4

z

2

w

�1

dw ;

=

2�

z

z

�

2

�+1

� i

Z

C

w

���1

e

w�

1

4

z

2

w

�1

dw ; (1.37)

where in the last line we integrated by parts, and made use of the fa
t that the \boundary

term" in the integration by parts vanishes. (This is the same property that we used previ-

ously in order to show that J

�

(z) de�ned by (1.21) satis�ed the Bessel equation.) Thus we

have obtained the re
urren
e formula

J

�+1

(z) + J

��1

(z) =

2�

z

J

�

(z) : (1.38)

1.4 Bessel Fun
tions of Half-integer Order

The Bessel fun
tions J

�

(z) take on a parti
ularly simple form when � is half an odd integer.

Consider the 
ase when � =

1

2

. In general we have the series expansion (1.27), namely

J

�

(z) =

1

X

r=0

(�1)

r

z

�+2r

2

�+2r

r! �(� + r + 1)

: (1.39)

Setting � =

1

2

, we may observe �rst that

�(

1

2

+ r + 1) = (

1

2

+ r) �(

1

2

+ r) = (

1

2

+ r)(

1

2

+ r � 1) �(

1

2

+ r � 1) ;

= (

1

2

+ r)(

1

2

+ r � 1) � � �

1

2

� �(

1

2

) ;

= 2

�r�1

(2r + 1)(2r � 1)(2r � 3) � � � 3 � 1 � �(

1

2

) : (1.40)
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Furthermore, we may write

r! = 2

�r

(2r) (2r � 2)(2r � 4) � � � 4 � 2 : (1.41)

Combined with the fa
t that �(

1

2

) =

p

�, we therefore have that

r! �(

1

2

+ r + 1) = 2

�2r�1

p

� (2r + 1)! : (1.42)

Substituting into (1.39), we therefore obtain

J
1

2

(z) =

r

2z

�

1

X

r=0

(�1)

r

z

2r

(2r + 1)!

; (1.43)

when
e

J
1

2

(z) =

r

2

� z

sin z : (1.44)

From our previous re
urren
e formula (1.36), it then immediately follows that

J

r+

1

2

(z) =

r

2

�

z

r+

1

2

h

d

z dz

i

r

�

sin z

z

�

;

=

1

p

�

(2z)

r+

1

2

h

d

dz

2

i

r

�

sin z

z

�

; (1.45)

where r is any non-negative integer. It is 
lear after a moment's thought that this means

that

J

r+

1

2

(z) = P

r

(z) sin z +Q

r

(z) 
os z ; (1.46)

where P

r

(z) and Q

r

(z) are polynomials in z

�

1

2

.

1.5 The Se
ond Solution of Bessel's Equation

We saw previously that if � is not an integer, the Bessel fun
tions J

�

(z) and J

��

(z) are

linearly independent, and both solve the Bessel equation (1.1). Being a se
ond-order di�er-

ential equation, the Bessel equation has exa
tly two linearly independent solutions, and so

they may be taken to be J

�

(z) and J

��

(z) when � is non-integral.

When � is an integer n the above reasoning fails be
ause, as we saw in (1.13), J

n

(z) and

J

�n

(z) are now linearly dependent; J

n

(z) = (�1)

n

J

�n

(z). As is often the 
ase when the

\se
ond solution" of a di�erential degenerates for some spe
ial values of the parameters,

one 
an in fa
t still extra
t the se
ond solution by taking an appropriately res
aled limit.

In the present 
ase, we do this by a 
onstru
tion in whi
h we take the di�eren
e between

the J

�

(z) and J

��

(z) solutions, divide by a quantity that vanishes appropriately at � =

integer, and then take the limit where � tends to the integer n. The idea is that the

14



vanishing denominator s
ales up the numerator that is otherwise tending to zero, so that a

�nite and non-zero result is obtained.

To be pre
ise this se
ond solution, known, not surprisingly, as the Bessel fun
tion of the

se
ond kind, and denoted by Y

�

(z), is de�ned by

Y

�

(z) =

J

�

(z) 
os �� � J

��

(z)

sin ��

: (1.47)

First, note that for a generi
 (non-integer) value of z, Y

�

(z) is just a 
ertain linear 
ombi-

nation of J

�

(z) and J

��

(z), with the 
oeÆ
ients of both terms being �nite and non-zero.

Thus when � is non-integral, Y

�

(z) is a perfe
tly good 
hoi
e for the se
ond solution of the

Bessel equation.

1

Now, 
onsider what happens when � is taken to be an integer, n. The numerator

be
omes pre
isely the 
ombination (�1)

n

J

n

(z) � J

�n

(z) that vanishes by virtue of the

relation (1.13). However, as promised, the denominator vanishes too. We end up, as � is

sent to n, with a \zero divided by zero" expression that a
tually has a regular limit. Of


ourse given that this limit exists, whi
h we shall show in a moment, it follows that Y

n

(z)

solves the Bessel equation, sin
e Y

�

(z) solves it for all non-integer �, and this will 
ontinue

to be true as � approa
hes the integer n. So it remains to show that the limit does indeed

exist, and that the resulting fun
tion Y

n

(z) is linearly independent of J

n

(z).

We 
an show both of these properties together, in fa
t. Re
all that the Wronskian of

two solutions y

1

and y

2

of a se
ond-order linear di�erential equation is de�ned by

�(y

1

; y

2

) � y

1

y

0

2

� y

2

y

0

1

: (1.48)

Re
all also that the Wronskian of the two solutions is non-vanishing if and only if the

solutions are linearly independent.

For the Bessel equation, if

z

2

y

00

1

+ z y

0

1

+ (z

2

� �

2

) y

1

= 0 ;

z

2

y

00

2

+ z y

0

2

+ (z

2

� �

2

) y

2

= 0 ; (1.49)

then multiplying the se
ond equation by y

1

and subtra
ting the �rst equation multiplied

by y

2

from it, we get

z

2

(y

1

y

00

2

� y

2

y

00

1

) + z (y

1

y

0

2

� y

2

y

0

1

) = 0 ; (1.50)

when
e

z�

0

+� = 0 : (1.51)

1

Sometimes Y

�

(z) is known as the Neumann fun
tion, and is denoted instead by N

�

(z).
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This 
an be immediately solved for the Wronskian, giving log� + log z = 
onstant, or in

other words

� =




z

; (1.52)

where 
 is a 
onstant. So the question of linear independen
e 
omes down to whether in a

parti
ular 
ase the 
onstant 
 turns out to be zero or not.

Let us �rst 
onsider the Wronskian of J

�

(z) and J

��

(z). We expe
t to �nd that it is

non-zero when � is not an integer, but that it be
omes zero when � is an integer. Let's see if

this is what happens. Sin
e we have established the result (1.52), we have only to determine

the 
onstant 
 (whi
h we expe
t to be dependent on �, but, of 
ourse, independent of z.)

We 
an �x 
 for the 
ase y

1

= J

�

(z), y

2

= J

��

(z) by looking at any 
onvenient range of

the 
oordinate z; the most 
onvenient thing is to look at the pla
e where z is very small,

sin
e this allows us to use just the leading-order terms in the series expansions of the Bessel

fun
tions.

We have from (1.27) that

J

�

(z) =

2

��

�(1 + �)

z

�

+O(z

�+2

) ;

J

��

(z) =

2

�

�(1� �)

z

��

+O(z

��+2

) ; (1.53)

Therefore, substituting into (1.48), we �nd that

�(J

�

; J

��

) = �

2�

z �(1 + �)�(1� �)

+O(1) : (1.54)

Of 
ourse sin
e we know that J

�

(z) and J

��

(z) satisfy the Bessel equation, and that �

must be of the form (1.52) for any two solutions, this means that the higher-order terms

represented by O(1) are a
tually zero. The point is, though, that we 
an be sure that

only the leading-order terms that we displayed expli
itly in (1.53) 
ontribute to the O(1=z)

result. (The higher terms from (1.53) would obviously 
ontribute to � at orders z

s

with

s � 0.)

Now, we use some standard properties of the Gamma fun
tion that were proved in Part

I of the 
ourse, namely

x�(x) = �(x+ 1) ; �(x) �(1� x) =

�

sin�x

: (1.55)

Putting these together, we learn that �(1+�) �(1��) = � �= sin(� �), and so (1.54) be
omes

�(J

�

; J

��

) = �

2 sin ��

� z

: (1.56)
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So, 
omparing with (1.52), we have


 = �

2 sin ��

�

: (1.57)

Thus we have found the expe
ted result, namely that J

�

and J

��

are linearly independent

for all � ex
ept when � is an integer.

Now 
onsider the Wronskian �(J

�

; Y

�

) of J

�

and Y

�

, de�ned in (1.47). Clearly sin
e

�(J

�

; J

�

) is always zero, this will simply be given by the 
ontribution from the se
ond term

in Y

�

:

�(J

�

; Y

�

) = �

1

sin ��

�(J

�

; J

��

) =

2

� z

: (1.58)

In the �nal stage here, we have substituted our previous result for �(J

�

; J

��

).

Our expression (1.58) shows that J

�

(z) and Y

�

(z) are linearly-independent for all values

of �, integer and non-integer. This is what we wanted to show. Also, the fa
t that the

Wronskian in (1.58) has turned out to be a �nite and non-zero 
onstant multiple of 1=z

shows that our limiting pro
edure to 
onstru
t Y

�

(z) at integer � is a good one; it has

produ
ed a fun
tion that has neither diverged nor vanished.

Let us investigate the properties of Y

�

(z) a little further. For now, we shall restri
t

attention to looking at the behaviour near z = 0. We have already seen how the J

�

(z)

Bessel fun
tion behaves, in the power-series expansion (1.27). Writing out the �rst few

terms for J

�

(z), we see that it is

J

�

(z) =

z

�

2

�

�(� + 1)

h

1�

z

2

4(� + 1)

+

z

4

4

2

(� + 1)(� + 2)

�

z

6

4

3

(� + 1)(� + 2)(� + 3)

+ � � �

i

:

(1.59)

Now, in Part I of the 
ourse, we dis
ussed how one in general 
onstru
ts the se
ond

independent solution of a se
ond-order linear ODE in terms of a given original solution. In

parti
ular, we saw that given a solution y

1

(z), and Wronskian �, then the se
ond solution

y

2

(z) is obtained as

y

2

(z) = y

1

(z)

Z

z

�(t)

y

1

(t)

2

dt : (1.60)

Of 
ourse if one takes di�erent values for the 
onstant lower limit of integration here, one

gets di�erent 
onstant multiples of the original solution y

1

(z) added to the se
ond solution

y

2

(z). This is to be expe
ted; if y

2

(z) is a solution linearly independent of y

1

(z), then so is

y

2

(z) + � y

1

(z) for any 
onstant �.

From this dis
ussion, it follows that with an appropriate 
hoi
e of the lower limit of

integration, we must have that

Y

�

(z) =

2

�

J

�

(z)

Z

z

1

t J

�

(t)

2

dt : (1.61)
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Here, we have substituted the result (1.58) for the Wronskian of J

�

(z) with Y

�

(z). Now, we

may take the series expansion for J

�

(z) given in (1.59), and substitute it into (1.61):

Y

�

(z) =

2

2�+1

�(� + 1)

2

J

�

(z)

�

Z

z

t

�2��1

h

1+

t

2

2(� + 1)

+

(2� + 5) t

4

16(� + 1)

2

(� + 2)

+ � � �

i

: (1.62)

For generi
 (i.e. non-integer) values of �, it is 
lear that term-by-term integration of the

integral in (1.62) will just generate powers of z of the form z

�2�

, z

�2�+2

, z

�2�+4

, et
.. In

fa
t, we know that at the end of the day the result must be that the entire expression in

(1.62) just produ
es some linear 
ombination of J

�

(z) and J

��

(z), sin
e these are the two

linearly independent solutions of Bessel's equation when � is not an integer.

However, when � = n = integer, it is evident that there will always be a parti
ular term

in the integrand in (1.62) that is of the form t

�1

. For example, if � = 0 it will be the �rst

term in the square bra
kets that gives t

�1

. If � = 1, it will be the se
ond term that gives

t

�1

, and so on. The point is that whenever � is an integer, we are �nding that the integral

in (1.62) yields a logarithm, sin
e

Z

z

t

�1

dt = log z : (1.63)

Thus we have learned that when � = n is an integer, the se
ond solution Y

n

(z) always

has a logarithmi
 divergen
e as z tends to zero. This logarithmi
 behaviour is in fa
t

pre
isely what is expe
ted from a general analysis of the properties of the se
ond solution

of a di�erential equation expanded around a regular singular point (see the dis
ussion in

Part 1 of the 
ourse).

In order to obtain the full stru
ture of the small-z series expansion for Y

�

(z), it is

easiest to go ba
k to the original de�nition (1.47). As we have seen above, the nature of

the expansion will depend signi�
antly on whether or not � is an integer, sin
e there will

be logarithims involved if � is an integer, but not otherwise. In fa
t, we are really only

interested in �nding the series expansion when � is an integer, sin
e for non-integer �, Y

�

(z)

is nothing but a non-singular linear 
ombination of J

�

(z) and J

��

(z), ea
h of whi
h 
an be

expanded straightforwardly using (1.27).

We need, therefore, to study Y

�

(z) given by (1.47) as � approa
hes an integer n. We

may write � = n+�, where � will be sent to zero. We 
an assume, without loss of generality,

that n is a non-negative integer. We have


os �� = 
os(n+ �)� � (�1)

n

;

sin �� = sin(n+ �)� � (�1)

n

sin �� � (�1)

n

� � : (1.64)
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Therefore from (1.47) we �nd that

Y

n

(z) =

1

� �

�

J

n+�

(z)� (�1)

n

J

�n��

(z)

�

; (1.65)

in the limit where � is sent to zero. In other words, we have to pi
k out the O(�) term in

(J

n+�

(z) � (�1)

n

J

�n��

(z)). (We know, of 
ourse, that there is no �-independent term, by

virtue of the relation J

n

(z) = (�1)

n

J

�n

(z) that we derived earlier.)

Some useful lemmata are the following:

�

z

2

�

n+�

=

�

z

2

�

n

e

� log(

1

2

z)

=

�

z

2

�

n

(1 + � log

z

2

+ � � �) ;

1

�(p+ �+ 1)

=

1

�(p+ 1)

�

1� �  (p+ 1) + � � �

�

; (1.66)

1

�(q � �+ 1)

= �

sin(q � �)�

�

�(�q + �) = (�1)

q

��(�q) + � � �

where p is a non-negative integer, q is a negative integer, and in all 
ases the terms rep-

resented by � � � are of order �

2

or higher, and are therefore not needed in our limiting

pro
edure. The fun
tion  (z) is the digamma fun
tion, de�ned by

 (z) �

�

0

(z)

�(z)

: (1.67)

One 
an show that for an integer argument m, it is given by

 (m) = �
 +

m�1

X

r=1

1

r

; (1.68)

where 
 = 0:5772157 : : : is the Euler-Mas
heroni 
onstant, de�ned as the limit when m �!

1 of

1

1

+

1

2

+

1

3

+ � � �+

1

m

� logm: (1.69)

Using the lemmata, we �nd that

J

n+�

(z)� (�1)

n

J

�n��

(z)

=

1

X

r=0

(�1)

r

r!

�

z

2

�

n+2r

(1 + � log

z

2

+ � � �)(1 � �  (n+ r + 1) + � � �)

�(�1)

n

�

n�1

X

r=0

(n� r � 1)!

r!

�

z

2

�

�n+2r

+ � � � (1.70)

�(�1)

n

1

X

r=n

(�1)

r

r!

�

z

2

�

�n+2r

(1� � log

z

2

+ � � �)(1 + �  (�n+ r + 1) + � � �) ;

where the se
ond and third lines 
ome from splitting the r summation for J

�n��

(z) into

the range where r � n is negative, and the remainder, where r � n � 0. After making a
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shift of the summation variable in the third line, r �! r+n, one immediately sees that, as

expe
ted, all the �-independent terms 
an
el out, and what remains 
an be written as

J

n+�

(z)� (�1)

n

J

�n��

(z) = �

1

X

r=0

(�1)

r

r! (n+ r)!

�

z

2

�

n+2r

h

2 log

z

2

�  (n+ r + 1)�  (r + 1)

i

��

n�1

X

r=0

(�1)

r

(n� r � 1)!

r!

�

z

2

�

�n+2r

+O(�

2

) : (1.71)

Finally, therefore, we �nd by substituting into (1.65) and sending � to zero that Y

n

(z)

has the series expansion

Y

n

(z) =

1

�

1

X

r=0

(�1)

r

r! (n+ r)!

�

z

2

�

n+2r

h

2 log

1

2

z �  (n+ r + 1)�  (r + 1)

i

�

1

�

n�1

X

r=0

(�1)

r

(n� r � 1)!

r!

�

z

2

�

�n+2r

: (1.72)

1.6 Asymptoti
 Expansions of J

�

(z) and Y

�

(z)

So far, we have studied the expansions for J

�

(z) and Y

n

(z), expressed as power series around

z = 0. The resulting expression (1.27) for J

�

(z) is 
onvergent for all �nite z, sin
e J

�

(z)

is analyti
 in the �nite 
omplex plane. For Y

n

(z), the series (1.72) has a bran
h point and

poles at z = 0, as signalled by the o

urren
e of the logarithms and inverse powers of z, but

otherwise it is analyti
 in the �nite 
omplex plane. These series are, in parti
ular, useful

and usable for answering all questions about the small-z behaviour of the Bessel fun
tions.

We should also like to know how the Bessel fun
tions behave at large values of their

argument z. For example, in a s
attering problem, where z might parameterise the radial


oordinate that measures the distan
e from the s
attering-
entre, one would like to know

how the s
attered waves depend on z at large distan
e. We shall in fa
t study an example

of su
h a s
attering problem later.

Finding the large-z behaviour of a fun
tion is the kind of problem that we studied at

the end of Part 1 of the 
ourse, under the heading of Asymptoti
 Expansions. In a typi
al

example, and indeed the Bessel fun
tions are no ex
eption, one 
annot obtain 
onvergent

power-series expansions at large z, owing to the fa
t that they have essential singularities at

in�nity. Another example of su
h a fun
tion is the exponential e

z

. Transforming from the


omplex variable z to w = 1=z, we see that in the vi
inity of z =1 the exponential looks

like e

1=w

with w 
lose to zero. This has a singularity at w = 0 that is \worse" than any

power-law 1=w

n

, no matter how large n is. This is what is 
alled an essential singularity.

We saw in Part I of the 
ourse that in su
h 
ir
umstan
es, when there is an essential

singularity, one may still be able to 
onstru
t a useful series expansion that approximates
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a fun
tion F (z) at large z. However, it will no longer be a 
onvergent series; instead, it is

an asymptoti
 expansion. We refer the reader to Part 1 of the le
ture notes for details. A

brief summary of the idea is as follows.

An ordinary 
onvergent power series approximates F (z) to better and better a

ura
y,

at �xed z, as more and more terms are in
luded in the sum. Eventually, the agreement

be
omes perfe
t as the number of terms is taken to in�nity. By 
ontrast, an asymptoti


expansion is a
tually divergent; if one sums up all the terms at a �xed value of z, the sum

diverges. However, instead what we do is to look at a �xed number of terms in the series;

the �rst N terms, let us say. Then, as z is made larger and larger, the N -term series gives

a better and better approximation to F (z), be
ming perfe
t in the limit when z be
omes

in�nite. For any given �nite value of z there is a limit to how good an approximation we


an get; beyond a 
ertain point, adding in more terms in the series makes things worse, not

better. Nonetheless, the asymptoti
 expansion is a very useful approximation that gives all

the required information about the large-z asymptoti
 behaviour of the fun
tion.

We have obtained the integral representation (1.29) for the Bessel fun
tion J

�

(z). A

very useful te
hnique for 
onstru
ting the asymptoti
 expansion of a fun
tion de�ned by an

integral representation is by means of the Method of Steepest Des
ent. This was dis
ussed

in detail in Part 1 of the 
ourse, and we shall not present all the details again here. The

general idea, expressed in the notation of variables that we are using in this se
tion, is that

one has an integral representation of the form

F (z) =

Z

C

g(t) e

z f(t)

dt ; (1.73)

where f(t) is su
h that Re(z f(t)) goes to �1 at both ends of the range of integration along

the 
ontour C. The idea is that as z is taken very large, the integrand be
omes dominated

by the point (or points) in the 
omplex t-plane where f(t) is stationary, f

0

(t) = 0. The

fun
tion g(t) is assumed to have su
h a form that it varies only slowly in the vi
inity of

the point, whi
h is at, let us say, t = t

0

. Then, what one does is to deform the 
ontour so

that it passes through the stationary point at t = t

0

, and swing it around so that it follows

the path of steepest des
ent as one moves away from t = t

0

in either dire
tion along the


ontour. To a good approximation, sin
e one has

f(t) = f(t

0

) +

1

2

(t� t

0

)

2

f

00

(t

0

) + � � � ; (1.74)

the integral is now just dominated by a Gaussian integrand of the form

e

�

1

2

u

2

; (1.75)
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where u is the renamed integration variable after having deformed the 
ontour so that it

follows the path of steepest des
ent. All other fa
tors in the integrand 
an just be taken

outside the integration, with their original argument t repla
ed by the value t

0

at the

stationary point. If there is more than one stationary point, we just repeat the pro
edure

at ea
h, and add up the 
ontributions.

Without further ado, let us now use the method of steepest des
ent to 
al
ulate the

asymptoti
 behaviour of the Bessel fun
tion J

�

(z). We have, from (1.29),

J

�

(z) =

1

2� i

Z

C

t

���1

e

1

2

z(t�t

�1

)

dt ; (1.76)

and so 
omparing with (1.73) we have

f(t) =

1

2

(t� t

�1

) : (1.77)

This has stationary points at f

0

(t) =

1

2

(1 + t

�2

) = 0, in other words at t = �i. Note that

we have f(i) = i, and f(�i) = �i. The �rst thing we do now is to deform the 
ontour C so

that it passes through the points t = �i.

Consider the 
ontribution from t = +i �rst. Expanding f(t) in a Taylor series around

t = +i, we have

f(t) = i�

i

2

(t� i)

2

+ � � � : (1.78)

(The �rst term is just f(i), and of 
ourse there is no linear term sin
e f

0

(i) = 0.) To deform

the 
ontour so that it follows the path of steepest des
ent, it is useful to introdu
e a new

integration 
oordinate u in pla
e of t, whi
h will be real along the steepest-des
ent path.

We do this by de�ning it to be su
h that

�

i

2

(t� i)

2

= �

u

2

2z

: (1.79)

(Take z to be real and positive for now.) Thus we have

(t� i)

2

=

u

2

z

e

�

1

2

i�

: (1.80)

Taking the square root, we get

t� i = �

u

p

z

e

�

1

4

i�

: (1.81)

We have 
hosen the square root with the minus sign here be
ause we want the 
ontour to

run in the natural anti
lo
kwise dire
tion as u runs from negative to positive values. Thus

for negative u, the 
ontour approa
hes t = i from the south-east, and as u goes positive it
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leaves t = i in a north-westerly dire
tion (the slope of the line being pre
isely �1). Note

that to 
hange integration variable from t to u, we shall have

dt =

dt

du

du = �

1

p

z

e

�

1

4

i�

: (1.82)

Let us 
all I

+

the 
ontribution to J

�

(z) from this stationary point at t = +i. Thus from

(1.76) we shall have

I

+

� �

1

2� i

�

e

1

2

i�

�

���1

1

p

z

e

�

1

4

i�

e

i z

Z

e

�

1

2

u

2

du : (1.83)

The fa
tors sitting out at the front 
ome from taking t

���1

outside the integral, setting

t = i = e

1

2

i�

as we do so; making the transformation from dt to du using (1.82); and taking

out the fa
tor e

z f(i)

= e

i z

that 
omes from

e

z f(t)

� e

z f(t

0

)�

1

2

u

2

: (1.84)

The integration over u 
an be ex
ellently approximated by allowing the limits to be �1

and +1, sin
e we are assuming that z is large. (See (1.79); when z is large, u 
an be large

while t is still rather 
lose to t = i.) Thus the integral is just a Gaussian, whi
h gives a

fa
tor of

p

2�. Putting it all together, we therefore have

I

+

�

1

p

2� z

e

i(z�

1

2

� ��

1

4

�)

: (1.85)

Now we 
onsider the 
ontribution I

�

to J

�

(z) from the other stationary point, at t = �i.

Expanding around this point we have

f(t) = �i +

i

2

(t+ i)

2

+ � � � ; (1.86)

and so we 
hoose our real integration variable u that parameterises the path of steepest

des
ent to be su
h that

(t+ i)

2

=

u

2

z

e

1

2

i�

: (1.87)

This time, the square root will be

t+ i =

u

p

z

e

1

4

i�

; (1.88)

so that the 
ontour 
omes in from the south-west, and head onwards to the north-east, as it

should. The slope here is pre
isely +1. Thus we �nd by a similar 
al
ulation to the above

that

I

�

�

1

p

2� z

e

i(�z+

1

2

� �+

1

4

�)

: (1.89)
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t = i

t = -i

Figure 9: The deformed Bessel 
ontour that follows the paths of steepest des
ent at t = �i.

The deformed 
ontour that we have used in the steepest-des
ent integrals is depi
ted in

Figure 9. Noti
e that the 
ontour is running at pre
isely the 45-degree angles implied by

(1.81) and (1.88) as it passes through the points t = +i and t = �i respe
tively.

Finally, we put the two results together, J

�

(z) = I

+

+ I

�

, giving

J

�

(z) �

r

2

� z


os(z �

1

2

� � �

1

4

�) : (1.90)

This is our asymptoti
 formula for the large-z behaviour of the Bessel fun
tion J

�

(z).

Noti
e that this result �ts very ni
ely with what we saw in the various graphs of Bessel

fun
tions, in Figures 1 to 6. One 
an see from the plots that the intervals between su

essive

zeros seem to be settling down to equal steps, pre
isely as is implied by the asymptoti
ally


osine form appearing in (1.90). Furthermore, one 
an see from the graphs that the am-

plitude of the os
illation is falling o� in a rather mild way as z gets larger. This also is

understandable from the asymptoti
 expression (1.90), whi
h has a 1=

p

z prefa
tor to the


osine fun
tion.

The asymptoti
 formula that we have obtained here is the leading term in the full

asymptoti
 expansion. As was dis
ussed in Part 1 of the 
ourse, there is a systemati


pro
edure for 
onstru
ting the expansion to any desired number of terms. Essentially, what

one does is to repla
e the trun
ated Taylor series for f(t) in (1.74) by the full series, or
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at least as many terms as one wishes to work with. The rede�ned integration 
oordinate

u is then given by the 
orresponding full expression, rather than the trun
ated one (1.80).

Other than that, and the asso
iated 
ompli
ations that now arise from having to invert so

as to express dt=du in terms of u, things pro
eed pretty mu
h as before. The result, whi
h

we shall derive later, 
an be shown to be

J

�

(z) �

r

2

� z

h


os(z �

1

2

� � �

1

4

�)

1

X

r=0

a

r

z

�2r

+ sin(z �

1

2

� � �

1

4

�)

1

X

r=0

b

r

z

�2r�1

i

; (1.91)

where a

0

= 1 and

a

r

=

(�1)

r

(2r)! 2

6r

�

(4�

2

� 1

2

)(4�

2

� 3

2

) � � � (4�

2

� (4r � 1)

2

)

�

;

b

r

=

(�1)

r+1

(2r + 1)! 2

6r+3

�

(4�

2

� 1

2

)(4�

2

� 3

2

) � � � (4�

2

� (4r + 1)

2

)

�

: (1.92)

Our result above 
orresponds to the leading-order term with the 
oeÆ
ient a

0

= 1 in this

asymptoti
 expansion. In pra
ti
e, (1.90) is 
ommonly quite suÆ
ient.

Having struggled to obtain the asymptoti
 form of J

�

(z), it is, fortunately, now a relative

triviality to get the analogous formula for Y

�

(z). We need only refer ba
k to the original

de�nition of Y

�

(z), given in (1.47), and plug in the result (1.90). After an elementary use

of the identities for the produ
t of two trigonometri
 fun
tions, we get the result:

Y

�

(z) �

r

2

� z

sin(z �

1

2

� � �

1

4

�) : (1.93)

1.7 The Hankel Fun
tions H

(1)

�

(z) and H

(2)

�

(z)

We have seen that asymptoti
ally, J

�

(z) and Y

�

(z) be
ome very similar to 
ertain 
osine

and sine fun
tions. Not surprisingly, perhaps, it turns out that it is often 
onvenient to in-

trodu
e 
omplex 
ombinations of J

�

(z) and Y

�

(z), whi
h have the property of approa
hing


omplex exponentials of the form e

�i z

asymptoti
ally. In parti
ular, these are very 
onve-

nient 
ombinations to use when 
onsidering solutions of a wave equation. A

ordingly, one

de�nes the so-
alled Hankel fun
tions of the �rst and se
ond kind, denoted by H

(1)

�

(z) and

H

(2)

�

(z) respe
tively, by

H

(1)

�

(z) = J

�

(z) + iY

�

(z) ; H

(2)

�

(z) = J

�

(z)� iY

�

(z) : (1.94)

Clearly, from (1.90) and (1.93), when z is large they have the asymptoti
 behaviour

H

(1)

�

(z) �

r

2

� z

e

i(z�

1

2

� ��

1

4

�)

; H

(2)

�

(z) �

r

2

� z

e

�i(z�

1

2

� ��

1

4

�)

: (1.95)
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The Hankel fun
tions 
an be obtained elegantly from the 
ontour integral representation

(1.29), by making suitable 
hanges to the 
hoi
e of 
ontour. Spe
i�
ally, we 
an show that

they are given by

H

(1)

�

(z) =

1

� i

Z

C

1

t

���1

e

1

2

z (t�t

�1

)

dt ;

H

(2)

�

(z) =

1

� i

Z

C

2

t

���1

e

1

2

z (t�t

�1

)

dt ; (1.96)

where the 
ontours C

1

and C

2

are 
hosen as follows. The 
ontour C

2

starts out like the

original 
ontour in Figure 7, just below the real axis out west at t = �1. It heads in and

swings half way around the origin, and then dives dire
tly in to the origin along the positive

real axis. The 
ontour C

1

is the re
e
tion of this a
ross the real axis; it 
omes out from the

origin, swings up and around, and heads o� to the west, just above the real axis, eventually

rea
hing t = �1. The two 
ontours are depi
ted in Figure 10 below.

C

C

1

2

Figure 10: The 
ontours C

1

and C

2

for the Hankel fun
tions H

(1)

�

(z) and H

(2)

�

(z).

The reason why su
h 
ontours are allowed is that as t heads in to the origin along the real

axis, the fa
tor e

�

1

2

z t

�1

in the integrand goes to zero (when the real part of z is positive.)

Thus we again have the situation that when one substitutes into the Bessel equation, the

\boundary term" arising from integration by parts vanishes at both ends of the 
ontour, just

like it did in our earlier dis
ussion of the integral representation for J

�

(z). Thus with either

of the 
ontours C

1

or C

2

, the integral de�nes a fun
tion that satis�es Bessel's equation.
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Let us now verify that indeed the expressions for H

(1)

�

(z) and H

(2)

�

(z) in (1.96) are in

agreement with the de�nitions (1.94). It is 
lear that the sum of the 
ontours C

1

and C

2

is

equivalent, up to allowed deformations, to the 
ontour C used in the integral representation

(1.29) for J

�

(z). Therefore we 
an immediately verify from (1.96) and (1.29) that indeed

we shall have

J

�

(z) =

1

2

(H

(1)

�

(z) +H

(2)

�

(z)) : (1.97)

It remains to show from (1.96) that

Y

�

(z) =

1

2i

(H

(1)

�

(z)�H

(2)

�

(z)) ; (1.98)

whi
h is what is required by (1.94). To do this, we �rst make the 
hange of integration

variable t = e

i�

=s in the expression for H

(1)

�

(z) in (1.96). Note that sin
e the imaginary

part of t is positive on the 
ontour C

1

, it follows that this maps into a 
ontour for s where

again its imaginary part is positive.

2

In fa
t for this reason, the 
ontour for the transformed

integral using s 
an again be taken to be just C

1

. The starting point t = 0 be
omes s = �1,

while the endpoint t = �1 be
omes s = 0. This reversal of the dire
tion is 
ompensated

by the fa
t that dt=t = �ds=s. The fa
t that the 
ontour has been mapped ba
k onto itself

is 
ru
ial, be
ause it means that we 
an again interpret the integral as giving a Hankel

fun
tion of the �rst kind; this time, with order ��. Thus we �nd that

H

(1)

�

(z) =

1

� i

e

�i � �

Z

C

1

s

��1

e

1

2

z (�s

�1

+s)

ds ;

= e

�i � �

H

(1)

��

(z) : (1.99)

By a similar argument, in whi
h we 
hange the integration variable in the expression

for H

(2)

�

(z) in (1.96) by t = e

�i�

=s, we dedu
e also that

H

(2)

�

(z) = e

i � �

H

(2)

��

(z) : (1.100)

(The 
hange of variable here ensures that t, whose imaginary part is negative on the 
ontour

C

2

, maps into s that also has negative imaginary part. Again, this means that s 
an be

integrated along the same 
ontour as was t.)

Having established these two results we 
an now not only express J

�

(z) in terms of

H

(1)

�

(z) and H

(2)

�

(z) using (1.97), but also J

��

(z) in terms of H

(1)

�

(z) and H

(2)

�

(z). These

2

Consider a point on the 
ontour C

1

in the 
omplex t plane. Sin
e t lies in the upper half plane, it has

the form t = r e

i �

, where 0 < � < �. Therefore s = e

i�

=t = r

�1

e

i(���)

, and so s lies in the upper half plane

too.
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an then be plugged into the original de�nition of Y

�

(z) in terms of J

�

(z) and J

��

(z) as

given in (1.47). This gives

Y

�

(z) =

1

2 sin ��

�


os �� (H

1

�

(z) +H

(2)

�

(z))� e

i � �

H

(1)

�

(z)� e

�i � �

H

(2)

�

(z)

�

: (1.101)

Colle
ting terms, we see that this produ
es pre
isely the expression (1.98). This 
ompletes

the demonstration that the original de�nitions (1.94) of the Hankel fun
tions agree pre
isely

with the integral representations given in (1.96).

Noti
e that we 
an easily repeat the previous derivation of the asymptoti
 behaviour

of the J

�

(z) Bessel fun
tion, for the 
ase of the Hankel fun
tions H

(1)

�

(z) and H

(2)

�

(z). In

fa
t, we have already obtained all the ne
essary results in se
tion 1.6. When we applied

the method of steepest des
ent there, we found that the 
ontour C passed through two

stationary points, at t = +i and t = �i, and so we obtained two 
ontributions whi
h, when

added, gave the asymptoti
 form of J

�

(z). For the Hankel fun
tions we have the same

integrand (multiplied by a fa
tor of 2), but now with the 
ontour C

1

or C

2

. In fa
t in

the method of steepest des
ent the 
ontour C

1

will be deformed to one that passes just

through the single stationary point at t = +i. Likewise, C

2

will be deformed to a 
ontour

passing just through the t = �i stationary point. Thus the asymptoti
 forms of H

(1)

�

(z) and

H

(2)

�

(z) will be pre
isely equal to 2I

+

and 2I

�

respe
tively, where I

�

are the 
ontributions


oming from the steepest-des
ent integrations around t = �i respe
tively in se
tion 1.6.

Sure enough, we see that the asymptoti
 forms of H

(1)

�

(z) and H

(2)

�

(z) given in (1.95) are

pre
isely in agreement with 2I

+

and 2I

�

respe
tively, where I

�

were obtained in (1.85) and

(1.89).

1.8 Orthogonality of Bessel fun
tions

If the Bessel equation (1.1) is divided by z, it assumes the self-adjoint form

(z y

0

)

0

+

�

z �

�

2

z

�

y = 0 : (1.102)

From the general dis
ussion of Sturm-Liouville problems (see Part 1 of the le
ture 
ourse),

this means that, with respe
t to suitable boundary 
onditions, the Bessel fun
tions will

satisfy orthogonality relations. These will be useful, for example, when we analyse problems

that involve solving Lapla
e's equation or the wave equation in situations with 
ylindri
al

symmetry, where Bessel fun
tions arise in the solutions.

Re
all, for example, that Lapla
e's equation in 
ylindri
al polar 
oordinates (�; �; z) is

1

�

�

��

�

�

� 

��

�

+

1

�

2

�

2

 

��

2

+

�

2

 

�z

2

= 0 : (1.103)
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Separating variables by writing  = R(�)�(�)Z(z), we get

d

2

Z

dz

2

� k

2

Z = 0 ;

d

2

�

d�

2

+ �

2

� = 0 ; (1.104)

d

2

R

d�

2

+

1

�

dR

d�

+

�

k

2

�

�

2

�

2

�

R = 0 ; (1.105)

where k

2

and �

2

are separation 
onstants. Res
aling the radial 
oordinate by de�ning

x = k �, and renaming R as y, the last equation takes the standard Bessel form

x

2

d

2

y

dx

2

+ x

dy

dx

+ (x

2

� �

2

) y = 0 : (1.106)

Thus the radial fun
tions R(�) are of the form

R(�) = J

�

(k �) or Y

�

(k �) : (1.107)

In a typi
al ele
trostati
s problem, the potential  will be required to be regular on

the axis at � = 0. For now, 
onsider an example where in addition  = 0 on a 
ylindri
al

surfa
e at some radius � = a. This implies that the general solution of Lapla
e's equation

will be expressed in terms of the J

�

(z) and Y

�

(z) Bessel fun
tions.

3

The requirement of

regularity at � = 0 implies that the Y

�

(z) Bessel fun
tions are ex
luded (as indeed, if � is

not an integer, are the J

�

(z) Bessel fun
tions for � < 0). So for now, let us just 
onsider

J

�

(z) as the expansion fun
tions.

We have seen from the plots of the Bessel fun
tions, and from their asymptoti
 be-

haviour, that J

�

(z) has a dis
rete in�nite set of zeros, at points on the real z axis that

asymptoti
ally approa
h an equal spa
ing. Let us say that the m'th zero of J

�

(z) o

urs at

z = �

�m

; so J

�

(�

�m

) = 0 : (1.108)

So m = 1 is the lo
ation of the �rst zero, m = 2 is the lo
ation of the se
ond, and so on,

as z in
reases from 0. They o

ur at de�nite values of �

�m

, though it is not easy to give

expli
it expressions for �

�m

.

If we are wanting to impose the requirement that the potential  vanishes on a 
ylindri
al

surfa
e at � = a, then we shall want to expand  in terms of Bessel fun
tions J

�

(k �) for

whi
h k a is equal to one of the quantities �

�m

de�ned above. In other words, this determines

3

If the boundary 
onditions were di�erent, we 
ould instead have a situation where the separation 
onstant

k above were imaginary, in whi
h 
ase we would be dealing with Bessel fun
tions of the form J

�

(i z), et
.These

are given di�erent names (just like hyperboli
 as opposed to trigonometri
 fun
tions), and we shall dis
uss

them later. Like the hyperboli
 fun
tions, they have real-exponential rather than os
illatory behaviour.
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the set of values for the separation 
onstant k that 
an arise in this boundary-value problem.

Thus we shall 
onsider the Bessel fun
tion expressions

J

�

(�

�m

�=a) ; (1.109)

these will form our expansion fu
tions for the radial fun
tion R(�). Substituting su
h an

R(�) into (1.105), and multiplying by �, we get

�

d

2

d�

2

J

�

(�

�m

�=a) +

d

d�

J

�

(�

�m

�=a) +

�

�

2

�m

�

a

2

�

�

2

�

�

J

�

(�

�m

�=a) = 0 : (1.110)

Now we follow the usual story for proving orthogonality, of muliplying (1.110) by

J

�

(�

�n

�=a), and on the other hand writing the equivalent equation to (1.110) but with

m repla
ed by n, multiplying it by J

�

(�

�m

�=a), and subtra
ting the latter from the former.

This gives

J

�

(�

�n

�=a)

d

d�

�

�

d

d�

J

�

(�

�m

�=a)

�

� J

�

(�

�m

�=a)

d

d�

�

�

d

d�

J

�

(�

�n

�=a)

�

=

�

2

�n

� �

2

�m

a

2

� J

�

(�

�m

�=a)J

�

(�

�n

�=a) : (1.111)

Next, we integrate this from � = 0 to � = a. On the left-hand side we integrate by parts,

�nding that there is now a 
an
ellation of the resulting two integrands, leaving only the

\boundary terms." Thus we have

�

�

�

� J

�

(�

�n

�=a)

d

d�

J

�

(�

�m

�=a)

�

�

�

a

0

�

�

�

�

� J

�

(�

�m

�=a)

d

d�

J

�

(�

�n

�=a)

�

�

�

a

0

=

�

2

�n

� �

2

�m

a

2

Z

a

0

J

�

(�

�m

�=a)J

�

(�

�n

�=a) � d� : (1.112)

Re
alling from (1.27) that near � = 0, J

�

(�

�n

�=a) is proportional to �

�

, we see that

with our assumption that � � 0 the lower limits on the left-hand side of (1.112) will give

zero. Furthermore, the upper limits will also give zero, sin
e by 
onstru
tion J

�

(�

�m

) = 0.

Thus we arrive at the 
on
lusion that for m 6= n (whi
h implies �

�m

6= �

�n

), we shall have

Z

a

0

J

�

(�

�m

�=a)J

�

(�

�n

�=a) � d� = 0 : (1.113)

Having established orthogonality whenm 6= n, it remains to determine the normalisation

of the integral that we get when instead we take m = n. To do this, let x = �

�m

�=a, so

that

Z

a

0

J

�

(�

�n

�=a)

2

� d� =

a

2

�

2

�n

Z

�

�n

0

J

�

(x)

2

x dx : (1.114)
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To evaluate the integral on the right-hand side, we integrate by parts, by writing J

�

(x)

2

x =

1

2

d=dx(x

2

J

�

(x)

2

)�

1

2

x

2

d=dx(J

�

(x)

2

), so that

Z

x

2

x

1

J

�

(x)

2

x dx =

h

1

2

x

2

J

2

�

i

x

2

x

1

�

Z

x

2

x

1

x

2

J

�

J

0

�

dx : (1.115)

We have also allowed rather more general upper and lower limits of integration x

1

and x

2

here, sin
e then the resulting formula will be of wider appli
ability. Now use the Bessel

equation (1.1) to write x

2

J

�

as �

2

J

�

� xJ

0

�

� x

2

J

00

�

, so that we get

Z

x

2

x

1

J

�

(x)

2

x dx =

h

1

2

x

2

J

2

�

i

x

2

x

1

�

Z

x

2

x

1

�

�

2

J

�

J

0

�

� xJ

0

�

2

� x

2

J

0

�

J

00

�

�

dx ;

=

h

1

2

x

2

J

2

�

i

x

2

x

1

�

Z

x

2

x

1

�

1

2

�

2

(J

2

�

)

0

�

1

2

(x

2

J

0

�

2

)

0

�

dx

=

1

2

h

x

2

J

2

�

� �

2

J

2

�

+ x

2

J

0

�

2

i

x

2

x

1

: (1.116)

In our spe
i�
 
ase we have integration limits x

1

= 0, x

2

= �

�n

. Therefore the �rst two

terms in the �nal line vanish at both our endpoints (re
all that �

�n

are pre
isely the values

of argument for whi
h J

�

(�

�n

) = 0). For the �nal term, we use (1.33), expanded out to

give

J

0

�

(z) =

�

z

J

�

(z)� J

�+1

(z) : (1.117)

Thus, with our assumption that � � 0 we see that x

2

J

0

�

2

will vanish at x = 0. Also, from

(1.117) we see that J

0

�

(�

�n

) = �J

�+1

(�

�n

), and so

Z

�

�n

0

J

�

(x)

2

x dx =

1

2

�

2

�n

J

�+1

(�

�n

)

2

; (1.118)

implying �nally that

Z

a

0

J

�

(�

�m

�=a)J

�

(�

�n

�=a) � d� =

1

2

a

2

J

�+1

(�

�n

)

2

Æ

mn

: (1.119)

With this orthogonality relation, it is now a simple matter to determine the 
oeÆ
ients

in an expansion for solutions of Lapla
e's equation, expressed in terms of the J

�

Bessel

fun
tions, so as to mat
h a given boundary 
ondition. The essential point is that, just like

a Fourier series, a suitable fun
tion 
an be expanded as a Fourier-Bessel series, i.e. a sum

over a 
omplete set of Bessel fun
tions. Spe
i�
ally, in the present 
ase we 
an expand any

well-behaved fun
tion f(�) that is regular at � = 0 and that vanishes at � = a as a sum of

the form

f(�) =

1

X

n=1




n

J

�

(�

�n

�=a) : (1.120)

Multiplying by J

�

(�

�m

�=a) � and integrating, the orthogonality relation (1.119) gives us

Z

a

0

f(�)J

�

(�

�m

�=a) � d� =

1

2

a

2

J

�+1

(�

�m

)

2




m

; (1.121)
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thus determining the expansion 
oeÆ
ients 


m

.

Consider the following example. A 
ondu
ting 
ylinder of height h and radius a is held

at zero potential. A 
at 
ondu
tor 
loses o� the 
ylinder at z = 0, and is also at zero

potential. The top fa
e, at z = h, is held at some spe
i�ed potential

 (�; �; h) = 	(�; �) : (1.122)

The problem is to determine the potential everywhere inside the 
avity.

From (1.104) we see that the z dependen
e and � dependen
e of the separation fun
tions

Z(z) and �(�) will be

Z(z) � sinhkz ; 
osh kz ;

�(�) � 
os �� ; sin �� : (1.123)

The vanishing of the potential on the plate at z = 0 means that for Z(z), we shall have

only the sinhkz solution. The periodi
ity in � means that � must be an integer.

Thus the general solution of Lapla
e's equation for this problem will be

 (�; �; z) =

1

X

m=0

1

X

n=1

J

m

(�

mn

�=a) (a

mn

sinm�+ b

mn

sinm�) sinh(�

mn

z=a) : (1.124)

The expansion 
oeÆ
ients a

mn

and b

mn

are determined by mat
hing this solution to the

spe
i�ed boundary 
ondition (1.122) at z = h. Thus we have

	(�; �) =

1

X

m=0

1

X

n=1

J

m

(�

mn

�=a) (a

mn

sinm�+ b

mn

sinm�) sinh(�

mn

h=a) : (1.125)

The orthogonality relation (1.119) for the Bessel fun
tions, together with the standard

orthogonality for the trigonometri
 fun
tions, means that all we need to do is to multiply

(1.125) by J

p

(�

pq

�=a) sin p� or J

p

(�

pq

�=a) sinp� and integrate over � and � in order to

read o� the integrals that determine the individual 
oeÆ
ients a

pq

and b

pq

. It is easy to see

that the result is

a

pq

=

2

� a

2

sinh(�

pq

h=a)J

p+1

(�

pq

)

2

Z

2�

0

d�

Z

a

0

� d�	(�; �)J

p

(�

pq

�=a) sin p� ;

(1.126)

b

pq

=

2

� a

2

sinh(�

pq

h=a)J

p+1

(�

pq

)

2

Z

2�

0

d�

Z

a

0

� d�	(�; �)J

p

(�

pq

�=a) 
os p� :

In this se
tion, we have seen how to make an expansion of solutions of Lapla
e's equation

or the wave equation in terms of the Bessel fun
tions J

�

, appropriate to a system with


ylindri
al symmetry. Furthermore, we made the assumption that the �eld we were solving
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for (for example, the ele
trostati
 potential) was required to be non-singular on the axis

of symmetry, and vanishing at radius � = a. Another example where su
h boundary


onditions would be appropriate is a stre
hed membrane forming a 
ir
ular drum, for whi
h

the os
illations would vanish on the rim of the drum, and, of 
ourse, they would be non-

singular in the middle of the membrane.

In di�erent 
ir
umstan
es one might want to 
onsider a situation with a di�erent bound-

ary 
ondition at � = a. For example, in an ele
trostati
s problem one might require that

the ele
tri
 �eld, rather than the potential, vanish at � = a. In this 
ase one would instead

want to impose that the derivative of the potential vanish at � = a. This example 
ould

be handled by a very similar method to the one we used, and only some of the �ne details

would 
hange. Essentially, one would now be 
hanging the boundary 
onditions in the

Sturm-Liouville problem (see the le
ture notes for Part 1 of the 
ourse). Again we would

be working with orthogonal sets of Bessel eigenfun
tions but now in (1.112) the boundary

terms that arise from integration by parts when proving orthogonality would vanish for

slightly di�erent reasons. For example, if we require � =�� = 0 at � = a, then we would


hange our 
hoi
e of the 
onstants �

��

so that instead of being de�ned as the zeros of J

�

(z),

they would instead be de�ned as the zeros of J

0

�

(z). With appropriate su
h 
hanges, the

dis
ussion would then go through in a very similar vein.

Another modi�
ation that might arise in a slightly di�erent kind of problem is that we

might need also to make use of the \se
ond solution" of the Bessel equation. The general

series expansion after separating variables in Lapla
e's equation or the wave equation would

involve both the J

�

and the J

��

(or Y

�

, if � is an integer) Bessel fun
tions. In other words,

Bessel fun
tions that are singular at � = 0 might be needed too. This 
ould happen either

be
ause one for some reason needed to allow the �eld  to be singular there, or else be
ause

� = 0 might not be within the region under 
onsideration. An example would be if we

were solving an ele
trostati
s problem in the region between two 
on
entri
 
ylinders of

radii a and b. Now, we would in general need the se
ond-solution Bessel fun
tions as well.

Again, it is not too mu
h of an extension of the methods developed already in this se
tion

to 
ope with su
h a 
ir
umstan
e. One would need to establish appropriate orthogonality

properties for the extended set of Bessel fun
tions, and to establish normalisation results

analogous to (1.116).

Going through the details of su
h modi�
ations and generalisations would really be

\more of the same." There are more interesting things to pursue, so let's move on.
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1.9 Modi�ed Bessel Fun
tions of the First and Se
ond Kind

A familiar feature of the equation for simple harmoni
 motion, y

00

(z) + !

2

y(z) = 0 is that

its os
illatory solutions sin!z and 
os!z be
ome instead the non-os
illatory hyperboli


fun
tions sinh!z and 
osh!z if the sign of the !

2

term is reversed, to give y

00

(z)�!

2

y(z) =

0. Of 
ourse another way of a
hieving this sign reversal is by sending z �! i z in the original

simple harmoni
 equation, and hen
e also in its solutions. One has the familiar relations

that

sin iz = i sinh z ; 
os iz = 
osh z : (1.127)

The di�erential equation with the hyperboli
 fun
tions as solutions also 
ommonly arises in

physi
s. For example, in a solution by separation of variables, it might be that a separation


onstant has one sign for 
ertain types of boundary 
ondition, and the opposite sign for

other types of boundary 
ondition. And this sign 
hange 
ould pre
isely manifest itself in

taking us from trigonometri
 to hyperboli
 fun
tions.

The story is very similar for the Bessel fun
tions. We have seen that the solutions J

�

(z)

and Y

�

(z) of Bessel's equation

z

2

y

00

+ z y

0

+ (z

2

� �

2

) y = 0 (1.128)

are os
illatory (for real z), at least when jzj is large enough. If we now make the repla
ement

z �! i z, then the equation takes the form, known as the Modi�ed Bessel Equation,

z

2

y

00

+ z y

0

� (z

2

+ �

2

) y = 0 : (1.129)

Clearly its solutions will follow from those of (1.128) by making the repla
ement z �! i z

in the arguments of J

�

(z) and Y

�

(z).

A
tually, our use of the word \
learly" here was perhaps a little optimisti
. The problem

is that although the basi
 fa
ts are 
lear, there is a lot of 
onfusion 
aused by di�erent

notations in the literature. Let's make an un
ontroversial de�nition �rst. All authors agree

to de�ne a \modi�ed Bessel fun
tion of the �rst kind," 
alled I

�

(z), as follows

I

�

(z) � e

�

1

2

� � i

J

�

(z e

1

2

� i

) : (1.130)

The 
ontroversy 
omes with the 
hoi
e of de�nition for the \modi�ed Bessel fun
tion of the

se
ond kind," 
alled

4

K

�

(z). Here, we shall de�ne K

�

(z) as follows:

K

�

(z) �

1

2

� e

1

2

(�+1) � i

H

(1)

�

(z e

1

2

� i

) ; (1.131)

4

It seems that everybody agrees on its name, and its symbol, if not its de�nition. It's not 
lear whether

one should regard that as a good thing or a bad thing!
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where H

(1)

�

(z) is the �rst Hankel fun
tion, introdu
ed earlier. From our previous de�nitions,

it follows that alternative (equivalent) ways of writing K

�

(z) are

K

�

(z) =

1

2

� e

1

2

(�+1)� i

�

J

�

(z e

1

2

� i

) + iY

�

(z e

1

2

� i

)

�

;

=

� (I

��

(z)� I

�

(z))

2 sin ��

: (1.132)

Obviously, from our previous dis
ussions for J

�

(z) and Y

�

(z), it is the 
ase that I

�

(z) and

K

�

(z) 
onstitute two linearly-independent solutions of the modi�ed Bessel equation.

We shall sti
k with these de�nitions. Just as a parentheti
 remark, we may note that the


hief \rival" to this de�nition is one where our K

�

(z) is multiplied by a fa
tor of 
os ��. The

logi
 for this extra fa
tor is that then, the I

�

and theK

�

modi�ed Bessel fun
tions will satisfy

identi
al re
urren
e relations. Without the 
os ��, there will be slightly di�erent formulae

for I

�

and K

�

. The pri
e to be paid, however, for making them uniform in this respe
t is

that the 
os �� fa
tor will kill o� the K

�

fun
tion 
ompletely if � is half an odd integer. For

that reason, the \rival" de�nition has fallen into disfavour. Another reason for preferring

the de�nition we are using here is that it is the one used in the algebrai
 
omputing language

Mathemati
a, whi
h is an immensely powerful tool for analyti
 mathemati
al 
omputation.

Having settled on the notation, now let us move on to the more substantial items on

the agenda. First, we 
an immediately write down a power-series expansion for I

�

(z), valid

for small z, by substituting the de�nition (1.130) into (1.27), to get

I

�

(z) =

1

X

r=0

1

r! �(� + r + 1)

�

z

2

�

�+2r

: (1.133)

Noti
e how the phase fa
tor in (1.130) has pre
isely removed the phase fa
tor arising from

repla
ing z by z e

1

2

� i

in (1.27), and furthermore, how the (�1)

r

fa
tor is also removed.

Re
all that we had previously determined that the series expansion (1.27) is 
onvergent

in the entire �nite 
omplex plane. Sin
e all we have really done is to rotate z through 90

degrees, it follows that the series expansion (1.133) is also 
onvergent in the entire �nite


omplex plane. This does not, however, ne
essarily mean that it will remain small! Indeed,

it is obvious from (1.133) that if we take z to be real and positive, then the series for I

�

(z)

is a sum of positive terms. Therefore, if we take z to be very large and positive, then it

follows that I

�

(z) will get very large. (This does not 
ontradi
t the 
onvergen
e of the

series. Think of the series for e

z

,

e

z

=

1

X

r=0

1

r!

z

r

: (1.134)

Again, for real positive z this is the sum of positive terms, and again it follows that for large
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positive z it gets very large. But we know from kindergarten that the series 
onverges for

all �nite z.) Keep this fa
t in mind as we move on to the next stage in the development.

In a moment, we shall present an extremely useful integral representation for K

�

(z).

Before doing so, we shall establish a property of K

�

(z) whi
h 
hara
terises it as being quite

distin
t in its behaviour from I

�

(z). We saw in (1.95) how the Hankel fun
tion H

(1)

�

(z)

behaves at large values of jzj. It follows, given the de�nition (1.131) for K

�

(z), that at large

z we shall have that

K

�

(z) �

r

�

2z

e

�z

: (1.135)

Noti
e again how all the phase fa
tors have ni
ely 
an
elled, upon substitution of (1.131)

into (1.95). The key point to noti
e from this is that as z tends to +1, K

�

(z) tends to

zero.

Now, we 
an present the integral representation for K

�

(z). It is

K

�

(z) =

p

�

�(� +

1

2

)

�

z

2

�

�

Z

1

1

e

�z x

(x

2

� 1)

��

1

2

dx ; � > �

1

2

; �

1

2

� < arg z <

1

2

� :

(1.136)

The proof that this integral really does give K

�

(z) 
onsists of three parts. First, we prove

that it satis�es the modi�ed Bessel equation, whi
h shows that it must be some linear


ombination of K

�

(z) and I

�

(z). Next, we prove that in fa
t it is purely a multiple of

K

�

(z), with no 
ontamination from I

�

(z). Finally, we test its normalisation, to show that

it is exa
tly K

�

(z), and not some 
onstant multiple of it.

To prove that the integral in (1.136) indeed de�nes a solution of the modi�ed Bessel

equation, we simply substitute it in. The easiest way to do this is to de�ne

f(z; x) � z

�

e

�z x

(x

2

� 1)

��

1

2

: (1.137)

This is the \beef" of what appears on the right-hand side of (1.136) before integration,

with all the multipli
ative 
onstant fa
tors dropped. Now substitute this into the modi�ed

Bessel equation (1.129), giving

z

2

f

00

+ z f

0

� (z

2

+ �

2

) f = z

�+1

e

�z x

(x

2

� 1)

��

1

2

(z x

2

� z � (2� + 1)x) ; (1.138)

(where a prime means a derivative with respe
t to z, of 
ourse). Now observe that the

right-hand side here 
an be written as a total derivative with respe
t to x, and so:

z

2

f

00

+ z f

0

� (z

2

+ �

2

) f =

d

dx

h

z

�+1

e

�z x

(x

2

� 1)

�+

1

2

i

: (1.139)

Now integrate this equation with respe
t to x, evaluated between the limits x = 1 and

x = 1, and re
all that, from (1.136), we are hoping to show that the integral of the left-

hand side of (1.139) is zero. This is exa
tly what we �nd; the integral of the right-hand side
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of (1.136) gives

h

z

�+1

e

�z x

(x

2

� 1)

�+

1

2

i

1

1

; (1.140)

and this vanishes at both limits provided that � > �

1

2

, and Re(z) > 0. Thus it is established

that (1.136) de�nes a fun
tion that satis�es the modi�ed Bessel equation. It follows that it

must be some linear 
ombination of the two independent solutions K

�

(z) and I

�

(z).

Next, we want to show that there is no \
ontamination" from I

�

(z). This is simple,

sin
e we have seen that K

�

(z) and I

�

(z) have diametri
ally opposite behaviours for large

positive z; I

�

(z) diverges, whilst K

�

(z) goes to zero. Now, it is manifest from (1.136) that

this integral de�nes a fun
tion that tends to zero as z tends to positive in�nity, be
ause of

the fa
tor e

�z x

in the integrand. Therefore it must be that the integral is produ
ing purely

K

�

(z), with no admixture of I

�

(z). (Even a tiny admixture of the form K

�

(z) + � I

�

(z), no

matter how small � was, would eventually have to diverge for suÆ
iently large z. Thus we

dedu
e that � must be rigorously zero.)

Finally, we need to 
he
k that the normalisation of the integral (1.136) is 
orre
t, so that

it is produ
ing exa
tly K

�

(z),, and not some multiple of it. This 
an be �xed by looking

at a spe
ial 
ase, sin
e only one 
onstant mulipli
ation fa
tor needs to be determined. This


an be done by looking at large z, and 
omparing with (1.135). To do this, it is better �rst

to make a 
hange of integration variable in (1.136); we let x = 1 + t=z. This gives

K

�

(z) =

r

�

2z

e

�z

�(� +

1

2

)

Z

1

0

e

�t

t

��

1

2

�

1 +

t

2z

�

��

1

2

dt : (1.141)

At large z we 
an negle
t the t=(2z) term in the integrand, sin
e by the time t be
omes

large enough for t=(2z) to outweigh 1, the e

�t

fa
tor in the integrand will have rendered the


ontribution from this portion of the integration range insigni�
ant. Thus approximately

we shall have

K

�

(z) �

r

�

2z

e

�z

�(� +

1

2

)

Z

1

0

e

�t

t

��

1

2

dt ; (1.142)

at large z. The integral now just gives �(� +

1

2

), and so we �nd that

K

�

(z) �

r

�

2z

e

�z

: (1.143)

This is exa
tly the same as the normalisation in (1.135). We have thus 
ompleted the

demonstration that (1.136) gives pre
isely the K

�

(z) modi�ed Bessel fun
tion.

The main reason for pursuing this rather lengthy derivation is that the integral rep-

resentation (1.136) for K

�

(z) provides us with a very simple way to obtain asymptoti


expansions for not only K

�

(z) itself, but also I

�

(z), J

�

(z) and Y

�

(z), to arbitrary order.
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More pre
isely, it is the integral expression (1.141) that we shall use. All we have to do

is to make a binomial expansion of the fa
tor (1 + t=(2z))

��

1

2

in the integrand of (1.141),

and then integrate term by term. (Re
all from Part 1 of the 
ourse that one is allowed to

integrate term by term in an asymptoti
 expansion.)

Making the binomial expanion, we �nd that (1.141) gives

K

�

(z) �

r

�

2z

e

�z

�(� +

1

2

)

1

X

r=0

�(� +

1

2

) (2z)

�r

r! �(� � r)

Z

1

0

e

�t

t

�+r�

1

2

dt ;

=

r

�

2z

e

�z

1

X

r=0

�(� + r +

1

2

)

r! �(� � r +

1

2

) (2z)

r

(1.144)

Using elementary properties of the Gamma fun
tion, one 
an see that this gives us the

asymptoti
 series

K

�

(z) �

r

�

2z

e

�z

h

1 +

(4�

2

� 1

2

)

1! 8z

+

(4�

2

� 1

2

)(4�

2

� 3

2

)

2! (8z)

2

+ � � �

i

: (1.145)

Our derivation of this series was based on the use of the integral representation (1.136),

whi
h is 
onvergent for �

1

2

� < arg z <

1

2

�. But a
tually, the asymptoti
 expansion we have

arrived at 
an be shown to be valid for the wider range of arguments �

3

2

� < arg z <

3

2

�.

(Re
all that K

�

(z) has a bran
h point at z = 0, as demonstrated by the z

�

fa
tor in its

power-series expansion around z = 0. Therefore, for generi
 �, the range �

3

2

� < arg z <

3

2

�

sill 
overs a lot less than the full range of phases for z that one needs to 
onsider, even

though it is more than a 
omplete 
ir
ulit around the origina of the 
omplex plane.)

We have arrived at the result for the 
omplete asymptoti
 expansion of K

�

(z). The

leading-order term is the one we found in (1.135), whi
h 
ame, originally, from our steepest-

des
ent analysis of the integral represenations for J

�

(z) and the Hankel fun
tions. In fa
t

the asynptoti
 expansions for all the assorted Bessel fun
tions 
an easily be given in terms

of the result (1.145). First, let us write it as

K

�

(z) =

r

�

2z

e

�z

�

P

�

(i z) + iQ

�

(i z)

�

; (1.146)

where

P

�

(z) � 1�

(4�

2

� 1

2

)(4�

2

� 3

2

)

2! (8z)

2

+

(4�

2

� 1

2

)(4�

2

� 3

2

)(4�

2

� 5

2

)(4�

2

� 7

2

)

4! (8z)

4

+ � � �

Q

�

(z) �

(4�

2

� 1

2

)

1! (8z)

�

(4�

2

� 1

2

)(4�

2

� 3

2

)(4�

2

� 5

2

)

3! (8z)

3

+ � � � : (1.147)

From the original de�nition (1.131) of K

�

(z) in terms of H

(1)

�

(z), it then follows that

H

(1)

�

(z) =

r

2

� z

e

i (z�

1

2

� ��

1

4

�)

�

P

�

(z) + iQ

�

(z)

�

; �� < arg z < 2� : (1.148)
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The se
ond Hankel fun
tion is the 
omplex 
onjugate of the �rst, so

H

(2)

�

(z) =

r

2

� z

e

�i (z�

1

2

� ��

1

4

�)

�

P

�

(z)� iQ

�

(z)

�

; �2� < arg z < � : (1.149)

Next, sin
e J

�

(z) is the real part of H

(1)

�

(z) we shall have

J

�

(z) =

r

2

� z

�

P

�

(z) 
os(z�

1

2

� ��

1

4

�)�Q

�

(z) sin(z�

1

2

� ��

1

4

�)

�

; �� < arg z < � :

(1.150)

On the other hand Y

�

(z) is the imaginary part of H

(1)

�

(z), and so

Y

�

(z) =

r

2

� z

�

P

�

(z) sin(z�

1

2

� ��

1

4

�)+Q

�

(z) 
os(z�

1

2

� ��

1

4

�)

�

; �� < arg z < � :

(1.151)

Finally, sin
e I

�

(z) is de�ned in terms of J

�

(z) by (1.130), we 
an obtain its asymptoti


expansion from (1.150), giving

I

�

(z) =

e

z

p

2� z

�

P

�

(i z)� iQ

�

(i z)

�

; �

1

2

� < arg z <

1

2

� : (1.152)

1.10 A S
attering Cal
ulation

The spe
ial fun
tions of mathemati
s, su
h as the Bessel fun
tions, typi
ally arise when

solving Lapla
e's equation, the S
hr�odinger equation or the wave equation by the method

of separation of variables. One 
lass of physi
al problem in parti
ular where they 
an arise is

in the study of s
attering. A typi
al situation is that one sits at a large distan
e (e�e
tively,

at in�nite distan
e) from some parti
le or obje
t, and sends in waves, whi
h are s
attered

o� the obje
t. One then looks at what 
omes ba
k, from one's vantage point at in�nity.

To 
al
ulate this s
attering pro
ess, one solves the wave equation (or maybe S
hr�odinger

equation) des
ribing the propagation of the waves under the in
uen
e of the s
attering

obje
t, and imposes appropriate boundary 
onditions at the s
attering 
entre, as di
tated

by the physi
s of the problem. Essentially what one then obtains is an expression for the

outgoing and ingoing waves at in�nity that result from having sent in an initial wave.

Let us 
onsider a ni
e example of a s
attering problem where we 
an use some of the

Bessel-fun
tion te
hnology that we have been studying. The example is not a traditional

one, but it has the merit of being simple, and maybe even a bit more interesting than

the \old faithfuls." We shall 
onsider a bla
k hole in �ve spa
etime dimensions. As far

as the relevant equations are 
on
erned, all that we need to know is that spin-0 �elds �

propagating in the ba
kground geometry of this bla
k hole satisfy the equation

d

2

�

dr

2

+

3

r

d�

dr

+

h

!

2

+

!

2

� `(`+ 2)

r

2

i

� = 0 : (1.153)
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Here r is the radial 
oordinate, the bla
k hole event horizon is lo
ated at r = 0, and we shall

sit safely out at in�nite distan
e from it, at r =1. The 
onstant ! is the frequen
y of the

wave, and ` is the angular quantum number analogous to the usual ` of quantum me
hani
s

in four spa
etime dimensions. (The 
entrifugal potential inD spa
etime dimensions is of the

form `(`+D� 3)=r

2

, whi
h explains the `(`+2) fa
tor here. The fa
tor of 3=r multiplying

d�=dr is aonther tell-tale sign that we are in D = 5 dimensions; it would be (D � 2)=r in

general.) The equation (1.153) has 
ome from making a rather standard sort of separation

of variables, writing the original s
alar wavefun
tion � as

� = �(r)Y

`

e

�i! t

; (1.154)

where the Y

`

represent spheri
al harmoni
s analogous to the familiar Y

`m

(�; '), but now

they are de�ned on a 3-sphere rather than a 2-sphere.

If we now let � =  =r, the equation (1.153) be
omes

r

2

d

2

 

dr

2

+ r

d 

dr

+

h

!

2

r

2

+ (!

2

� (`+ 1)

2

i

� = 0 : (1.155)

Introdu
ing a new radial 
oordinate z = ! r, and de�ning

�

2

= (`+ 1)

2

� !

2

; (1.156)

the equation be
omes pre
isely Bessel's equation

z

2

 

00

+ z  

0

+ (z

2

� �

2

) = 0 : (1.157)

Thus the solutions for � are

� =

�

r

J

�

(! r) +

�

r

J

��

(! r) : (1.158)

Now, we want to study what happens when we send in a wave from in�nity, and to see

what 
omes ba
k at us from the bla
k-hole \s
atterer." We know the general solution for the

waves, so now we must impose the appropriate boundary 
onditions. In fa
t the boundary


onditions are very simple here. To make an analogy that will be understood by anyone who

has ever had to deal with the problem of 
o
kroa
hes in the kit
hen, a bla
k hole works just

like the \Roa
h Motel" that you 
an buy in the stores. This useful devi
e enti
es 
o
kroa
hes

into it, whereupon they eat an attra
tive-tasting poison and die. The advertising slogan

for the Roa
h Motel is \They 
he
k in, but they don't 
he
k out!" A bla
k hole works

in just the same way. Imagine ingoing waves, represented by 
o
kroa
hes walking radially

inwards along the dire
tion of de
reasing r, and outgoing waves represented by 
o
kroa
hes
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walking radially outwards, with r in
reasing. The bla
k-hole boundary 
ondition is that at

the horizon (r = 0), there are only ingoing waves, but no outgoing waves; \they 
he
k in,

but they don't 
he
k out."

How do we re
ognise a wave that is ingoing and one that is outgoing? Sin
e the time

dependen
e of the wave is of the form e

�i! t

, as in (1.154), it follows that an ingoing wave

is one whose phase in
reases as r de
reases. For example,

� � e

�i! t�i! r

(1.159)

is an ingoing wave, sin
e to sit �xed on a given wavefront one has to go to smaller values

of r as t gets bigger. Conversely, an example of an outgoing wave would be

� � e

�i! t+i! r

: (1.160)

Sin
e we have to impose the boundary 
ondition on the waves at r = 0, let us look at

that region �rst. From (1.27), we know that for very small z we shall have

J

�

(z) �

1

�(� + 1)

�

z

2

�

�

: (1.161)

Thus from (1.158), we see that the r-dependen
e of the s
alar waves will be of the general

form r

��

, with � given by (1.156). If � is real, the solutions are in fa
t not wavelike at

all. To have waves, we shall need the frequen
y ! to be suÆ
iently large that � be
omes

imaginary, i.e. ! > `+ 1. Let us therefore assume that this is the 
ase, and de�ne � = i q,

with

q �

q

!

2

� (`+ 1)

2

; with ! > `+ 1 : (1.162)

Thus we shall have

� �

�

r �(1 + i q)

e

i q log(! r=2)

+

�

r �(1� i q)

e

�i q log(! r=2)

(1.163)

near r = 0. (We have used that x

y

= e

y log x

here.)

We saw previously that an outgoing wave is one whose phase in
reases as r in
reases.

This means that the �rst term in (1.163) is outgoing, while the se
ond term is ingoing. The

bla
k-hole boundary 
ondition tells us therefore that

� = 0 ; (1.164)

whi
h means that the physi
al wave solutions (1.158) are

� =

�

r

J

�i q

(! r) : (1.165)
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Now, we look in the asymptoti
 region near r = 1. For this, we use the asymptoti


expansion (1.90), whi
h is

J

�

(z) �

r

2

� z


os(z �

1

2

� � �

1

4

�) : (1.166)

(This leading-order term is good enough here.) From (1.165), we therefore have

� �

�

r

r

2

� ! r


os(! r +

1

2

q � i�

1

4

�) ;

�

�

2r

r

2

� ! r

e

1

2

q �

e

1

4

i�

h

e

�i! r

� i e

�� q

e

i! r

i

: (1.167)

We re
ognise the �rst term in the square bra
ket as an ingoing wave, and the se
ond term

as an outgoing wave.

The prefa
tor in front of the square bra
ket in (1.167) is unimportant for our immediate

purposes, sin
e it is a 
ommon fa
tor in both terms. The key point is that we have found

that waves out at in�nity have the general stru
ture

 � e

�i! r

+ S

0

e

i! r

; (1.168)

with S

0

= �i e

�� q

. So sending in a wave of unit strength, we get ba
k a wave with strength

S

0

. Thus S

0

tells us how mu
h 
omes ba
k, as a fra
tion of what is sent in. The quantity

S

0

is 
alled the S Matrix. We 
an use it to 
al
ulate the Absorption Probability P , whi
h

will in general be given by P = 1 � jS

0

j

2

. Thus for this bla
k hole s
attering problem, the

absorption probability is given by

P = 1� e

�2� q

= 1� e

�2�

p

!

2

�(`+1)

2

; ! > `+ 1 : (1.169)

On the other hand, when ! � `+ 1, there is no absorption at all sin
e there is no wavelike

behaviour at the horizon, and so P = 0. This mat
hes on smoothly to the result in (1.169).

As the frequen
y of the waves gets larger and larger, the s
attering tends exponentially to

zero, and a

ordingly the absorption probability tends to 1. The bla
k hole is behaving

more and more like a \sink," with everything that is sent in just disappearing behind the

horizon, and no ba
ks
atter 
oming ba
k to the asymptoti
 region near r =1.

One 
an 
onsider many other physi
al s
attering pro
esses, and analyse them in a similar

way. The general prin
iples will always be the same, although the details, su
h as the

boundary 
onditions, will depend on the physi
al problem one is 
onsidering. But always,

the idea is to send in waves from in�nity, impose appropriate boundary 
onditions at the

s
attering 
entre, and then look at the ratio between ingoing and outgoing wave 
omponents

at in�nity.
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Noti
e that both in the solution of potential-theory problems, and in s
attering 
al
u-

lations, an absolutely 
ru
ial point is that one needs to know how a spe
i�
 solution of

the Bessel equation behaves in di�erent regions. For example, in the s
attering 
al
ulation

we needed to know the asymptoti
 behaviour at large z for the solution that had a given

behaviour near z = 0. It would not be good enough simply to know that for small z the

two solutions of Bessel's equation look like

u

1

� z

�

; u

2

� z

��

; (1.170)

(see (1.161)), and that for large z the two solutions look like

v

1

� z

�

1

2


os z ; v

2

� z

�

1

2

sin z ; (1.171)

(see (1.166)). (These asymptoti
 forms 
ould, for example, be obtained dire
tly from the

Bessel equation, by taking z to be small or large respe
tively.) The 
ru
ial point is that

one needs to know exa
tly what the relation between the small-z and large-z forms of a

spe
i�
 solution are; in parti
ular, one needs to know exa
tly what the 
onstants a

i

and b

i

are in the relation v

1

= a

1

u

1

+ b

1

u

2

and v

2

= a

2

u

1

+ b

2

u

2

. This is pre
isely the sort of

information that we have been able to obtain as a result of having integral representations

for the Bessel fun
tions.

2 Hypergeometri
 and Con
uent Hypergeometri
 Fun
tions

2.1 Hypergeometri
 Fun
tions

Let us begin by 
onsidering the following power series,

y(z) = 1 +

a b




z

1!

+

a(a+ 1) b(b+ 1)


(
+ 1)

z

2

2!

+

a(a+ 1)(a + 2) b(b+ 1)(b + 2)


(
 + 1)(
 + 2)

z

3

3!

+ � � � (2.1)

whi
h 
an be 
onveniently written as

y(z) =

1

X

n=0

(a)

n

(b)

n

(
)

n

z

n

n!

; (2.2)

where we de�ne the Po
hhammer symbol (a)

n

by

(a)

n

�

�(a+ n)

�(a)

= a(a+ 1)(a + 2) � � � (a+ n� 1) : (2.3)

(Note that (a)

0

= 1.) The fun
tion de�ned by this power series is 
alled the Hypergeometri


Fun
tion

2

F

1

(a; b; 
; z); thus

2

F

1

(a; b; 
; z) =

1

X

n=0

(a)

n

(b)

n

(
)

n

z

n

n!

: (2.4)
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It is, apparently, 
alled the hypergeometri
 fun
tion be
ause it is a natural generalisation

of the fun
tion 1=(1� z) that gives the geometri
 series 1 + z + z

2

+ z

3

+ � � �. The notation

with the subs
ripts 2 and 1 on the

2

F

1

signi�es that the series expansion has 2 Po
hhammer

symbols in the numerator, and 1 in the denominator. The use of semi
olons as delimiters

for the 
 parameter is 
onventional too. Noti
e that be
ause of the fa
t that �(x) is in�nite

when x = 0 or a negative integer, the parameter 
 must not be zero or a negative integer.

On the other hand, if a or b is zero or a negative integer, then the series terminates and

be
omes just a �nite polynomial. Note also that

2

F

1

(a; b; 
; z) is equal to

2

F

1

(b; a; 
; z).

It is easy to see that the hypergeometri
 fun
tion satis�es the Hypergeometri
 Equation

z(1 � z) y

00

(z) + [
� (a+ b+ 1) z)℄ y

0

(z)� a b y(z) = 0 : (2.5)

We 
an 
he
k this by simply plugging (2.4) into (2.5), and shifting the summation variables

in ea
h term as ne
essary so as to get z-dependen
e z

n

for ea
h term. In other words, just


he
k that the 
oeÆ
ient of ea
h power of z vanishes. To do this, it is useful to observe

that the Po
hhammer symbol satis�es the relation

(a)

n+1

=

�(a+ n+ 1)

�(a)

= (a+ n)

�(a+ n)

�(a)

;

= (a+ n) (a)

n

: (2.6)

We dis
ussed the hypergeometri
 equation a little in Part 1 of the 
ourse. Dividing (2.5)

by z(1� z), we see that the 
oeÆ
ient of y

0

(z) then has �rst-order poles 1=z and 1=(1� z),

as does the 
oeÆ
ient of y(z) (sin
e z

�1

(1 � z)

�1

= z

�1

+ (1 � z)

�1

). Re
alling that the

di�erential equation

y

00

(z) + p(z) y

0

(z) + q(z) y(z) = 0 (2.7)

has a regular singular point at z = z

0

if p(z) and/or q(z) diverge there, but (z � z

0

) p(z)

and (z � z

0

)

2

q(z) are �nite, we see that the hypergeometri
 equation has regular singular

points at z = 0 and z = 1. Furthermore, if we let z = 1=w, we �nd that the transformed

equation is

(w � 1)

d

2

y

dw

2

+ [2� 
+ (a+ b� 1)w

�1

℄

dy

dw

�

a b

w

2

y = 0 ; (2.8)

and therefore w = 0, 
orresponding to z = 1, is also a regular singular point. Thus the

hypergeometri
 equation is non-singular everywhere ex
ept at three regular singular points,

lo
ated at z = 0, 1 and1. Any se
ond-order linear ordinary di�erential equation with three

regular singular points 
an be transformed into the 
anoni
al form of the hypergeometri


equation, by making appropriate 
hages of variable, and so it en
ompasses a rather broad


lass of di�erential equations, in
luding many that one en
ounters in physi
s.
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It is a standard result in the theory of di�erential equations, whi
h we dis
ussed in Part 1,

that at least one of the two solutions of a se
ond-order ODE (ordinary di�erential equation)


an be obtained as an expansion around a regular singular point z

0

of the equation, in the

form

y = (z � z

0

)

s

1

X

n=0

a

n

(z � z

0

)

n

; (2.9)

where s is a root of a 
ertain se
ond-order polynomial equation 
alled the indi
ial equation.

5

Furthermore, in a situation where the fun
tion q(z) in (2.7) a
tually happens not to have a

se
ond-order pole 
ontribution at the regular singular point, one root of the indi
ial equation

is s = 0. This is the 
ase at z = 0 in the hypergeometri
 equation, and so we know that

there should 
ertainly exist one solution that is a pure analyti
 power series when expanded

around the point z = 0. This is exa
tly what we have in (2.4); a pure analyti
 power-series

solution to the hypergeometri
 equation.

Another standard result from the theory of ODEs is that the radius of 
onvergen
e of

this power series solution will be equal to the distan
e from the expansion point, z = 0, to

the next nearest singular point of the equation. In the 
ase of the hypergeometri
 equation,

this will be the regular singular point at z = 1. Thus we learn that the power series (2.4)

is 
onvergent in the disk jzj < 1. This 
an easily be veri�ed by applying the ratio test for


onvergen
e of a series. We take the ratio R of the (n+1)'th term divided by the n'th term.

If the modulus of this ratio is less than 1 in the limit as n tends to in�nity, then the series


onverges absolutely; if it is greater than 1 it diverges, and if it equals 1, a more deli
ate

analysis is needed. In our 
ase, from (2.4), we have

R =

(a)

n+1

(b)

n+1

(
)

n+1

(n+ 1)!

(
)

n

n!

(a)

n

(b)

n

z =

(n+ 1) (n+ 
)

(n+ a) (n+ b)

z (2.10)

in the limit when n �!1, implying that we get jRj = jzj. Thus the series indeed 
onverges

for jzj < 1, and diverges for jzj > 1.

The hypergeometri
 equation, being of se
ond order, must have two linearly-independent

solutions. We may, in general, obtain the se
ond solution as follows. Make the substitution

y(z) = z

1�


w(z) in the hypergeometri
 equation (2.5). After a 
ouple of lines of simple

algebra, one �nds that w(z) satis�es

z (1� z)w

00

+ [2� 
� (a+ b� 2
+ 3) z℄w

0

� (a� 
+ 1)(b � 
+ 1)w = 0 : (2.11)

5

Generi
ally, if the two roots s

1

and s

2

of the indi
ial equation do not di�er by an integer, then both

solutions 
an be obtained in the form (2.9). But more often than not, life being what it is, it turns out that


ases of parti
ular interest 
orrespond to the situation where s

1

� s

2

is and integer.
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This 
an be re
ognised as the hypergeometri
 equation again, but now with the parameters

(a� 
+ 1; b� 
+ 1; 2� 
) instead of (a; b; 
). Thus we see that

y

2

= z

1�


2

F

1

(a� 
+ 1; b� 
+ 1; 2� 
; z) (2.12)

is another solution of the hypergeometri
 equation. It is obvious that if 
 is not an integer,

this solution is linearly independent of the original solution

2

F

1

(a; b; 
; z), sin
e (2.12) is

a then a power series in non-integer powers of z whereas

2

F

1

(a; b; 
; z) is a power series

in integer powers of z. If 
 is an integer then one 
an show that (2.12) is in general the

same solution as

2

F

1

(a; b; 
; z) (ex
ept for spe
ial values of the parameters a and b). The

situation is very reminis
ent of the Bessel equation, where J

��

(z) provides a solution that

is independent of J

�

(z), ex
ept when � is an integer. As in that 
ase, it turns out here that

in su
h a \degenerate" situation, the se
ond independent solution will in
lude logarithm

terms.

We may 
onstru
t an integral representation for the hypergeometri
 fun
tion as follows.

We begin by introdu
ing the Beta Fun
tion B(p; q), de�ned as

6

B(p; q) �

�(p) �(q)

�(p+ q)

: (2.13)

Clearly B(p; q) = B(q; p). Now 
onsider the following expression for �(p) �(q), whi
h is

obtained just by taking the produ
t of two standard integral representations for the Gamma

fun
tion:

�(p) �(q) =

Z

1

0

e

�u

u

p�1

du

Z

1

0

e

�v

v

q�1

dv : (2.14)

Now let u = x

2

, v = y

2

and then 
hange to polar 
oordinates; x = r 
os �, y = r sin �;

�(p) �(q) = 4

Z

1

0

dx

Z

1

0

dy e

�x

2

�y

2

x

2p�1

y

2q�1

= 4

Z

1

0

dr

Z
1

2

�

0

d� e

�r

2

r

2p+2q�1

(
os �)

2p�1

(sin �)

2q�1

= 2

Z

1

0

d�

Z
1

2

�

0

d� e

��

�

p+q�1

(
os �)

2p�1

(sin �)

2q�1

= 2�(p+ q)

Z
1

2

�

0

d� (
os �)

2p�1

(sin �)

2q�1

; (2.15)

where in the third line we have 
hanged variable again, from r to � = r

2

, allowing us to

re
ognise a standard integral representation for �(p + q). Finally, the further 
hange of

variable from � to t = sin

2

� yields the result that

B(p; q) =

�(p) �(q)

�(p+ q)

=

Z

1

0

(1� t)

p�1

t

q�1

dt : (2.16)

6

An upper-
ase Greek beta is written as B.
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Using the Beta fun
tion, we 
an therefore write the ratio (b)

n

=(
)

n

in the power series

for the hypergeometri
 fun
tion as

(b)

n

(
)

n

=

B(b+ n; 
� b)

B(b; 
� b)

=

1

B(b; 
� b)

Z

1

0

(1� t)


�b�1

t

b+n�1

dt : (2.17)

Thus from (2.4) we shall have

2

F

1

(a; b; 
; z) =

1

B(b; 
� b)

1

X

n=0

(a)

n

)

n!

z

n

Z

1

0

(1� t)


�b�1

t

b+n�1

dt : (2.18)

Inter
hanging the order of the integration and summation, we 
an sum the resulting series

by noting from the binomial theorem that

1

X

n=0

(a)

n

n!

z

n

t

n

=

1

X

n=0

�(a+ n)

�(a)n!

(z t)

n

= (1� z t)

�a

: (2.19)

Thus we arrive at the following integral representation for the hypergeometri
 fun
tion:

2

F

1

(a; b; 
; z) =

�(
)

�(b) �(
 � b)

Z

1

0

(1� t)


�b�1

t

b�1

(1� z t)

�a

dt : (2.20)

This is valid for any 
omplex value of z provided that z is not real and larger than 1. (This

restri
tion ensures that the (1� z t)

�a

fa
tor does not give rise to a pole or bran
h point in

the integrand at t = 1=z.) The bran
h of (1�x t)

�a

must be 
hosen so that (1�x t)

�a

�! 1

as t goes to zero, and the parameters b and 
 must be su
h that Re(
) >Re(b) > 0. Note

that this represents an analyti
 
ontinuation of the original power-series expression (2.4)

for

2

F

1

(a; b; 
; z), whi
h was 
onvergent only for jzj < 1.

By playing around with this integral representation, and others, one 
an establish many

properties and inter-relations among hypergeometri
 fun
tions. We shall not go into too

mu
h further detail here, sin
e the subje
t is a vast one, and is dis
ussed at length in

many books. We shall just re
ord a few more fa
ts here, without proof, to show the sort

of relations that one 
an establish. Firstly, there is another integral representation for the

hypergeometri
 fun
tion, known as the Barnes Integral,

2

F

1

(a; b; 
; z) =

�(
)

2� i �(a) �(b)

Z

i1

�i1

�(a+ s) �(b+ s) �(�s)

�(
+ s)

(�z)

s

ds ; (2.21)

whi
h is proven by establishing that the term (a)

n

(b)

n

z

n

=((
)

n

n!) in the power-series ex-

pansion (2.4) is the residue of the integrand at s = n. This integral gives the hypergeometri


fun
tion as a fun
tion analyti
 in the domain de�ned by the inequality jarg zj < �, and so

again, it is an analyti
 extension of the original series de�nition (2.4).

One 
an use the Barnes representation (2.21) in order to obtain a new power series

for

2

F

1

(a; b; 
; z) that is 
onvergent when jzj > 1. After some e�ort, one arrives at the
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on
lusion that

�(a) �(b)

�(
)

2

F

1

(a; b; 
; z) =

�(a) �(b� a)

�(
� a)

(�z)

�a

2

F

1

(a; a� 
+ 1; a� b+ 1; z

�1

)

+

�(b) �(a� b)

�(
� b)

(�z)

�b

2

F

1

(b; b� 
+ 1; b� a+ 1; z

�1

) ;(2.22)

where jarg (�z)j < �. Sin
e the hypergeometri
 fun
tions on the right-hand side both have

1=z as argument, it follows that when jzj > 1 the original power series (2.4) 
an be used in

order to obtain a series expansion for the right-hand side, and hen
e a series expansion for

2

F

1

(a; b; 
; z) that is 
onvergent for jzj > 1. The formula (2.22) is typi
al of many relations

that one 
an obtain, relating

2

F

1

(a; b; 
; z) to hypergeometri
 fun
tions with argument 1=z

or (1� z) or z=(1� z), and so on. It 
an easily be shown that ea
h term on the right-hand

side of (2.22) is separately a solution of the original hypergeometri
 equation.

Noti
e that the power series in 1=z that we obtain by using (2.22) together with the

original series (2.4) is a perfe
tly 
onvergent one, rather than an asymptoti
 expansion. This

is be
ause z = 1 is a regular singular point of the hypergeometri
 equation. In the next

subse
tion we shall see what happens when we take a singular limit of the parameters in the

hypergeometri
 equation, resulting in the regular singular point at z = 1 being moved out to

join the one at z =1. In this limit the point at in�nity be
omes an irregular singular point,

and 
orrespondingly one is ba
k to the situation where one 
an obtain only an asymptoti


expansion, as opposed to a 
onvergent power-series expansion, around z = 1. In fa
t,

as we shall see, this limit in whi
h two regular singular points join together to make an

irregular singular point gives an equation, 
alled the 
on
uent hypergeometri
 equation,

that in
ludes our old friend the Bessel equation as a spe
ial 
ase.

2.2 Con
uent Hypergeometri
 Fun
tions

We have seen that the hypergeometri
 equation

z (1� z) y

00

(z) + [
� (a+ b+ 1) z)℄ y

0

(z)� a b y(z) = 0 : (2.23)

has three singular points, all of them regular singular points, lo
ated at z = 0, 1 and

1. Their pre
ise lo
ations 
an be moved around by making transformations of z, su
h

as 
onstant shifts and s
alings. Consider in parti
ular the following transformation, under

whi
h

z �!

z

b

; (2.24)

implying that the hypergeometri
 equation be
omes

z (1� z b

�1

) y

00

(z) + [
� (a+ b+ 1) b

�1

z)℄ y

0

(z)� a y(z) = 0 ; (2.25)
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(after dividing out by b). Evidently, at this stage the singular points of the equation have

been transformed to z = 0, b and 1.

Now, let us send b to in�nity. We 
an see that this is a perfe
tly well-de�ned limit of

the equation (2.25), whi
h leads to

z y

00

+ (
� z) y

0

� a y = 0 : (2.26)

This is 
alled the Con
uent Hypergeometri
 Equation. The name 
omes from the fa
t that

the two regular singular points z = b and z = 1 in (2.25) have joined together (in a


on
uen
e), at z =1. Be
ause they are now superimposed, one �nds that the singularity

at z = 1 is now more divergent, and in fa
t it is now an irregular singular point. (One

shows this by the usual pro
edure of letting z = 1=w, and studying the stru
ture of the

singularity in the equation at w = 0.)

Let us see what has happened to the hypergeometri
 fun
tion

2

F

1

(a; b; 
; z) that was a

solution of the hypergeometri
 equation, in this limiting pro
ess. We shall have

lim

b!1

2

F

1

(a; b; 
; z=b) : (2.27)

From (2.4), the b dependen
e of the term in z

n

in the power series for

2

F

1

(a; b; 
; z=b) will

therefore be (b)

n

=b

n

, and so we have

lim

b!1

(b)

n

b

n

= lim

b!1

b (b+ 1)(b + 2) � � � (b+ n� 1)

b

n

= 1 : (2.28)

Thus we have the solution

1

F

1

(a; 
; z) =

1

X

n=0

(a)

n

(
)

n

z

n

n!

(2.29)

to the 
on
uent hypergeometri
 equation (2.26). Observe that the notation here is in

a

ordan
e with the previous one, namely that the subs
ripts 1 and 1 on

1

F

1

signify that

there is 1 Po
hhammer symbol in the numerator, and 1 in the denominator, in ea
h term

in the series.

Now that we have derived it, let us 
hange the symbols of its arguments to the more


onventional ones

1

F

1

(a; b; z). This fun
tion is 
alled a Con
uent Hypergeometri
 Fun
tion,

or a Kummer Fun
tion. It is often denoted by the symbol M(a; b; z), and its full name is

Kummer's regular fun
tion, so we have

M(a; b; z) =

1

X

n=0

(a)

n

(b)

n

z

n

n!

; (2.30)

satisfying the 
on
uent hypergeometri
 equation

z y

00

+ (b� z) y

0

� a y = 0 : (2.31)
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Sin
e the singular point of the equation nearest to the regular singularity at z = 0 is

the irregular singular point at z = 1, we know that the series (2.30) will be 
onvergent

everywhere in the �nite 
omplex plane.

The same limiting pro
ess 
an be applied also to the se
ond solution (2.12) of the

hypergeometri
 equation. Doing so, we obtain the se
ond solution for the 
on
uent hyper-

geometri
 equation,

y

2

= z

1�b

M(a� b+ 1; 2 � b; z) : (2.32)

As in the 
ase of the hypergeometri
 equation, here this solution to the 
on
uent hyperge-

ometri
 equation is linearly-independent of y

1

�M(a; b; z) as long as b is not an integer.

If, on the other hand, b = 1 then 
learly y

2

is exa
tly equal to y

1

. If b = N , where N is

an integer � 2, then y

2

be
omes singular, but 
an be res
aled by an appropriate 
onstant

fa
tor before setting b = N so as to render the expression �nite. It then turns out to be

proportional to y

1

again. For example, using the power-series expansion (2.29), the se
ond

solution given in (2.32) has the form

y

2

= z

1�b

�

1 +

(a� b+ 1) z

2� b

+

(a� b+ 1)(a � b+ 2) z

2

2! (2 � b)(3 � b)

+

(a� b+ 1)(a� b+ 2)(a � b+ 3) z

3

3! (2� b)(3 � b)(4� b)

+ � � �

�

: (2.33)

Clearly ea
h term beyond the �rst diverges as b is set equal to 2, but if we �rst multiply by

(2� b), and then set b = 2, we get the �nite result

y

2

= (a� 1)

�

1 +

1

2

a z +

1

12

a(a+ 1) z

2

+

1

144

a(a+ 1)(a+ 2) z

3

+ � � �

�

: (2.34)

This 
an be 
ompared with the series expansion of M(a; b; z) itself at b = 2, whi
h, from

(2.29), is

M(a; 2; z) = 1 +

1

2

a z +

1

12

a(a+ 1) z

2

+

1

144

a(a+ 1)(a + 2) z

3

+ � � � : (2.35)

Thus at b = 2 we have that

lim

b!2

(2� b) y

2

= (a� 1) y

1

; (2.36)

with analogous results at b = 3, 4, 5, et
.

This is exa
tly like the situation with the J

�

(z) and J

��

(z) Bessel fun
tions, at � =

integer. As in that 
ase, the way to extra
t a se
ond linearly-independent solution is to take

the di�eren
e between the two solutions thatare independent for non-integer parameter b,

and divide out by an appropriate fa
tor that vanishes as b approa
hes an integer, so as to
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re
over a �nite result analogous to Y

n

(z). Thus one de�nes the se
ond solution here to be

U(a; b; z) �

�

sin� b

h

M(a; b; z)

�(b)�(a� b+ 1)

�

z

1�b

M(a� b+ 1; 2 � b; z)

�(a)�(2 � b)

i

: (2.37)

Following similar steps to those that we used for Y

n

(z), one 
an �nd the series expansion

for U(a; b; z) around z = 0. This involves showing �rst that the quantity in square bra
kets

in (2.37) vanishes at b = N = 2; 3; 4; : : :, and then 
arefully expanding around b = N + �

and pi
king up the terms of �rst order in �. For example, by doing this for b = 2 one �nds

that U(a; 2; z) be
omes

U(a; 2; z) =

1

�(a) z

+

2
 +  (a) + log z

�(a� 1)

+O(z; z log z) : (2.38)

Here 
 is the Euler-Mas
heroni 
onstant and  (s) = �(s)

0

=�(s) is the Digamma fun
tion.

We see the familiar appearan
e of logarithmi
 terms in the series expansion. On a

ount of

this non-analyti
ity at z = 0, the fun
tion U(a; b; z) is 
alled Kummer's Irregular Fun
tion.

In general it 
an be shown that at b = n + 1, where n � 0 is an integer, the fun
tion

U(a; b; z) has the series expansion

U(a; n+ 1; z) =

(�1)

n+1

n! �(a� n)

h

M(a; n+ 1; z) log z +

1

X

r=0

(a)

r

z

r

(n+ 1)

r

r!

�

 (a+ r)�  (r + 1)�  (n+ r + 1)

�i

+

(n� 1)!

�(a)

z

�n

M(a� n; 1� n; z)

n

; (2.39)

where the notation M(a � n; 1 � n; z)

n

means that just the �rst n terms in the series

expansion for M(a� n; 1� n; z) are retained.

We 
an also derive integral representations for the Kummer fun
tions, by taking the

appropriate limit in the original expressions for the hypergeometri
 fun
tions. For example,

we may begin with the integral representation (2.20) for

2

F

1

(a; b; 
; z). Now we a
tually

know that this must be symmetri
 under the ex
hange of the labels a and b, even though

it is not obvious, sin
e the original series expansion for the hypergeometri
 fun
tion is

symmetri
 in a and b. Thus we know from (2.20) that we must also have

2

F

1

(a; b; 
; z) =

�(
)

�(a) �(
� a)

Z

1

0

(1� t)


�a�1

t

a�1

(1� z t)

�b

dt : (2.40)

In this form, the pro
ess of repla
ing z by z=b and sending b to in�nity is easily implemented,

sin
e the only b dependen
e 
omes from the fa
tor

(1 � z t b

�1

)

�b

: (2.41)
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Now it is a standard result

7

that the limit of (1 � x=b)

�b

as b tends to in�nity is just e

x

,

and hen
e we �nd that

lim

b!1

2

F

1

(a; b; 
; z b

�1

) =

�(
)

�(a) �(
� a)

Z

1

0

(1� t)


�a�1

t

a�1

e

z t

dt : (2.42)

Finally, repla
ing 
 by b for 
onvenien
e, we have the result that

M(a; b; z) =

�(b)

�(a) �(b� a)

Z

1

0

(1� t)

b�a�1

t

a�1

e

z t

dt : (2.43)

This has restri
tions on the values of the parameters that follow dire
tly from those for the

hypergeometri
 integral (2.20), namely that Re(b) > Re(a) > 0. It is valid for any �nite z,

and so it de�nes M(a; b; z) as a fun
tion analyti
 everywhere in the �nite 
omplex plane.

This a

ords with the fa
t that the series expansion (2.30) is 
onvergent for all �nite z.

One 
an easily show from (2.43), by making the 
hange of integration variable t = 1�s,

that

M(a; b; z) = e

z

M(b� a; b;�z) : (2.44)

This is known as Kummer's �rst formula.

To 
lose this se
tion, here are some examples that show how spe
ial 
ases of the 
on
uent

hypergeometri
 fun
tions 
orrespond to other well-known fun
tions. The Bessel fun
tions,

for example, are spe
ial 
ases:

M(� +

1

2

; 2� + 1; 2i z) = �(� + 1) e

i z

�

1

2

z

�

��

J

�

(z) ;

U(� +

1

2

; 2� + 1; 2i z) =

1

2

p

� e

�� i (�+

1

2

)

e

i z

(2z)

��

H

(2)

�

(z) : (2.45)

Among many other spe
ial 
ase are the exponential fun
tion e

z

=M(a; a; z), the Laguerre

polynomials

M(�n; �+ 1; z) =

n!

(�+ 1)

n

L

(�)

n

(z) ; (2.46)

and the Hermite polynomials

M(�n;

1

2

;

1

2

z

2

) =

(�

1

2

)

�n

n!

(2n)!

H

2n

(z) ; M(�n;

3

2

;

1

2

z

2

) =

(�

1

2

)

�n

n!

(2n+ 1)!

z

�1

H

2n+1

(z) : (2.47)

7

Whi
h 
an be proven by noting that at large b we have 1 � x=b = e

�x=b

+ O(b

�2

), implying that

(1 � x=b)

�b

= (e

�x=b

)

�b

(1 + e

x=b

O(b

�2

))

�b

= e

x

(1 + e

x=b

O(b

�2

))

�b

. Now note that 1 + e

x=b

O(b

�2

) has

the form e

y=b

2

+O(b

�3

) for some y, and hen
e (1 + e

x=b

O(b

�2

))

�b

= e

�y=b

(1 + e

�y=b

2

O(b

�3

))

�b

. Iterating

this, we see that all the fa
tors asso
iated with these higher terms be
ome 1 as b is sent to in�nity, leaving

the result e

x
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2.3 Asymptoti
 Expansions and the Stokes Phenomenon

Sin
e the point z = 1 in the 
on
uent hypergeometri
 equation is an irregular singular

point, we expe
t that any series expansions for its solutions expanded around z =1 will be

asymptoti
 series rather than 
onvergent ones. We 
an study this in detail for the regular

Kummer fun
tion M(a; b; z) by making use of the integral representation (2.43).

First, we must 
ontrive by making an appropriate 
hange of variables to separate out

the z dependen
e in the exponential fun
tion from the t dependen
e, in su
h a way that

we 
an make a series expansion of the integrand in inverse powers of z. We need the sort

of transformation of integration variable that took the integral representation (1.136) for

the modi�ed Bessel fun
tion K

�

(z) into the form (1.141). However, this does not work out

quite so easily in the present 
ase, on a

ount of the range of the integration variable t in

(2.43) being [0; 1℄ rather than [1;1℄. The answer to how to handle this problem is a rather

simple one, namely to write the integral

R

1

0

as

R

1

0

=

R

1

�1

�

R

0

�1

. Thus we rewrite (2.43) as

M(a; b; z) =

�(b)

�(a) �(b� a)

h

Z

1

�1

(1� t)

b�a�1

t

a�1

e

z t

dt�

Z

0

�1

(1� t)

b�a�1

t

a�1

e

z t

dt

i

:

(2.48)

Note that this 
hoi
e of lower limit �1 on both the integrals is an appropriate one when

Re(z) is positive.

8

Let us 
onsider �rst the 
ase where z is taken to be real, positive and large. In the �rst

integral, we make the 
hange of variable from t to u de�ned by t = 1 � u=z, while in the

se
ond integral we 
hange to w de�ned by t = �w=z. Both integrals now run from 0 to 1

over their respe
tive integration variables:

M(a; b; z) =

�(b)

�(a) �(b� a)

h

z

a�b

e

z

Z

1

0

e

�u

u

b�a�1

(1� u z

�1

)

a�1

du

+(�z)

�a

Z

1

0

e

�w

w

a�1

(1 + w z

�1

)

b�a�1

dw

i

: (2.49)

We shall see below that the two integrals are approximately equal to �(b � a) and �(a)

respe
tively, whi
h are �nite and non-zero for generi
 a and b. Sin
e we are 
onsidering

the 
ase where z is real, large and positive it follows that the 
ontribution from the �rst

term will be overwhelmingly larger than that from the se
ond term, on a

ount of the e

z

prefa
tor. Thus only the �rst term will 
ontribute in the asymptoti
 expansion for large

positive z.

8

Of 
ourse one 
an write

R

1

0

=

R

1

t

0

�

R

0

t

0

for any 
hoi
e of t

0

. We shall see below that a 
hoi
e other than

t

0

= �1 be
omes appropriate when z is to be taken large and negative.
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Noti
e how with these 
hanges of variable we have 
ontrived to turn the integrands into

fun
tions that 
an be expanded in power series in 1=z. Spe
i�
ally, to evaluate the �rst

term in (2.49) we use the binomial theorem to obtain

(1� u z

�1

)

a�1

=

1

X

r=0

�(a)

r! �(a� r)

�

�

u

z

�

r

: (2.50)

Substituting this into the �rst integral in (2.49), the term-by-term integration be
omes a

triviality, sin
e all the terms are of the form

R

1

0

e

�x

x


�1

dx, whi
h is just �(
). Thus we

obtain the asymptoti
 expansion for M(a; b; z), valid when z is real, large and positive:

M(a; b; z) �

�(b)

�(b� a)

z

a�b

e

z

1

X

r=0

�(b� a+ r)

r! �(a� r)

�

�

1

z

�

r

: (2.51)

It should be emphasised that every term in this expansion is more important than even the

leading-order term 
oming from the se
ond integral in (2.49) that we dropped.

A brief pause for a word on terminology is appropriate here. Stri
tly speaking, we should

not 
all (2.51) itself an asymptoti
 expansion; the exponentials fa
tor e

z

is not stri
tly

allowed in the de�nition of an asymptoti
 series. Rigorously-speaking, an asymptoti
 series

must involve a sum only over (inverse) powers of z, of the form

P

n�0

z


�n

. And in fa
t,

as we dis
ussed in Part I, the exponential fun
tion e

z

itself has the asymptoti
 expansion

e

z

� 0 when z tends to �1, and admits no asymptoti
 expansion at all when z tends to

+1. So stri
tly speaking, we should really take the e

z

fa
tor in (2.51) over to the left-hand

side, and say that it is e

�z

M(a; b; z) that has the asymptoti
 expansion (given by (2.51)

with the e

z

fa
tor omitted). Of 
ourse we a
tually know perfe
tly well how e

z

behaves at

large positive and negative z and so in fa
t we are perfe
tly happy to leave it in there on

the right-hand side, and in pra
ti
e we usually refer to (2.51) as an asymptoti
 series for

M(a; b; z). But it is worth bearing this point in mind, to avoid possible 
onfusion later.

Now, 
onsider instead the situation when z is real, large and negative, so that z = �jzj.

In this 
ase, we should use the identity that

R

1

0

=

R

1

0

�

R

1

1

. Using this in (2.43), we now

make the 
hanges of variable t = u=jzj in the �rst of these integrals, and t = 1 + w=jzj in

the se
ond. This leads to the expression

M(a; b; z) =

�(b)

�(a) �(b � a)

h

jzj

�a

Z

1

0

e

�u

u

a�1

(1� u jzj

�1

)

b�a�1

du

�(�jzj)

b�a�1

e

�jzj

Z

1

0

e

�w

w

b�a�1

(1 + w jzj

�1

)

a�1

dw

i

: (2.52)

This time, it is 
lear that as z tends to �1 the �rst term overwhelmingly dominates over

the se
ond, be
ause of the e

�jzj

prefa
tor in the se
ond term. Again we perform a binomial
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expansion of the z-dependent fa
tor in the integrand of the �rst term, this time obtaining

the following asymptoti
 expansion, valid for z real, large and negative:

M(a; b; z) �

�(b)

�(a)

jzj

�a

1

X

r=0

�(a+ r)

r! �(b� a� r)

�

�

1

jzj

�

r

: (2.53)

The nature of the asymptoti
 expansions for M(a; b; z) for large positive z and for large

negative z are totally di�erent. To emphasise the point, let's 
ompare the leading-order

terms in the two 
ases:

M(a; b; z) �

8

>

>

<

>

>

:

�(b)

�(a)

z

a�b

e

z

; z �! +1

�(b)

�(b�a)

jzj

�a

z �! �1

(2.54)

A
tually, we should not be surprised by the fa
t that a fun
tion 
an have totally di�erent

asymptoti
 expansions depending upon the dire
tion in whi
h one heads o� to in�nity. We

already saw this in Part I of the 
ourse, in the dis
ussion of asymptoti
 expansions, when we

found that e

z

has the asymptoti
 series expansion e

z

� 0 for z large and negative, whilst no

asymptoti
 expansion exists at all for z large and positive. (Re
all the 
autionary dis
ussion

above about the stri
t meaning of an asymptoti
 series, and interpret these observations

appropriately within the spirit of those remarks!) The di�erent asymptoti
 behaviours

exhibited by M(a; b; z) for large positive and negative z is mu
h more interesting than the

situation for the exponential fun
tion, however.

One way of seeing why the upper asymptoti
 expansion in (2.54) 
ould not possibly be

valid for all values of arg(z) is as follows. We know that M(a; b; z) is analyti
 in the whole

�nite 
omplex z plane, and therefore in parti
ular, it must be a single-valued fun
tion of z.

Thus if we write z = jzj e

i �

, then we know that if we allow � to in
rease by an angle 2�,

then the fun
tion M(a; b; z) must return to its initial value.

Obviously, for generi
 values of the parameters a and b, the upper fun
tion in (2.54) is

not single valued, and so if we were to allow � to in
rease by 2� we would pi
k up a phase

fa
tor

e

2� (a�b) i

6= 1 ; (when (a� b) 6= integer) : (2.55)

Thus the asymptoti
 expansion has a behaviour that is totally wrong, if we allow z to be

swung around by a full 2� angle. Similar remarks apply to the lower formula in (2.54).

This observation is an example of what is 
alled the Stokes Phenomenon, and it is in fa
t

what almost always happens with asymptoti
 expansions. To see exa
tly what is going on,

we need to do a rather more 
areful analysis of the asymptoti
 behaviour of M(a; b; z) not

merely for z real and large, but for z 
omplex and large, of the form z = jzj e

i �

with jzj large
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and the phase � allowed to take any value. What we shall �nd is that for � in a 
ertain range

around � = 0, an appropriate generalisation of the upper asymptoti
 behaviour in (2.54)

o

urs, whislt for � in the rest of the range, around � = �, an appropriate generalisation

of the lower asymptoti
 behaviour in (2.54) o

urs. There are 
ertain 
rossover angles on

whi
h both types of asymptoti
 behaviour have roughly equal importan
e.

To study the Stokes phenomenon in more detail, we need to repeat the previous analysis,

but now for the 
ase where z tends to in�nity with some phase �. In other words, we take

z = e

i �

jzj and send jzj to in�nity, holding the angle � �xed. We shall 
onsider �rst the 
ase

of angles � in the range 0 < � < �; the reason for pla
ing this restri
tion in this 
ase will

be
ome apparent below. We now use the identity that

Z

1

0

dt =

Z

�1 e

�i �

0

dt�

Z

�1 e

�i �

1

dt : (2.56)

Use this in (2.43), with the 
ontours of integration now running with an angle � relative to

the negative real axis. In the �rst integral, we make the 
hange of variable

t = �

w e

�i �

jzj

=

w e

i(���)

jzj

; (2.57)

while in the se
ond integral we make the 
hange of variable

t = 1�

u e

�i �

jzj

: (2.58)

In ea
h 
ase, to traverse the stated 
ontour we shall have the new integration variable w or

u running from 0 to +1. After simple algebra, we get the following:

M(a; b; z) =

�(b)

�(a) �(b� a)

h

e

i(���) a

jzj

a

Z

1

0

e

�w

w

a�1

�

1 +

w

z

�

b�a�1

dw

+

e

z

e

�i(b�a) �

jzj

b�a

Z

1

0

e

�u

u

b�a�1

�

1�

u

z

�

a�1

du

i

: (2.59)

The integration 
ontours in the 
omplex t-plane are depi
ted in Figure 11 below.

Sin
e the integrand in (2.43) has bran
h points at t = 0 and t = 1, we must establish

a 
onvention about where to 
hoose our bran
h 
uts, and then sti
k with this 
hoi
e in the

subsequent analysis. Spe
i�
ally, when we de
ompose the integral in (2.43) into a di�eren
e

of two integrals as in (2.56), with t running o� to in�nity somwhere in the 
omplex t-plane,

we must establish a 
onvention about where the bran
h 
ut running out to in�nity will lie.

Let us 
hoose the negative real t axis. This means that we must restri
t � to lie in between

0 and �, so that the 
ontours for the two t integrations don't 
ross over the real t axis and

pass through the bran
h points at t = 0 or t = 1.
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0 1

t-plane
t = - w e -i θ /|z|

t = 1 - u e -i θ /|z|

θ θ

Figure 11: The 
ontours for 0 < � < � (solid lines) and �� < � < 0 (dashed lines)

Eventually, we make binomial expansions of the quantities (1 + w=z)

b�a�1

and (1 �

u=z)

a�1

in the integrands, to obtain the full asymptoti
 expansions. First, it is useful to

fo
us just on the leading-order terms, where, for very large jzj, we approximate these fa
tors

by 1. This 
an be done for exa
tly the same reason as we dis
ussed previously, namely that

by the time w or u has be
ome large enough that jw=zj or ju=zj 
annot be negle
ted in


omparison to 1, the exponential fa
tor will have be
ome so tiny that the error is very small.

In fa
t in the subsequent dis
ussion we 
an always fo
us just on the two leading-order terms,

with the understanding that ea
h is always to be supplemented by its binomial-expansion

des
endants.

For the leading-order terms, the integrals that remain to be evaluated then simply give

�(a) and �(b� a) respe
tively, and so the leading 
ontributions from ea
h integral give

M(a; b; z) �

�(b)

�(b� a)

jzj

�a

e

i(���) a

+

�(b)

�(a)

jzj

a�b

e

jzj e

i�

e

i(a�
) �

; (2.60)

where, it will be re
alled, 0 < � < �. In fa
t if z is real and positive we have already obtained

the result (2.51), whi
h is pre
isely (2.60) with � = 0, bearing in mind that the �rst term

in (2.60) is negligable 
ompared with the se
ond in this 
ase, on a

ount of the latter's e

jzj
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fa
tor. If, on the othere hand, z is real and negative then the previously-obtained expansion

(2.53) 
an be seen to be pre
isely in agreement with setting � = � in (2.60), and bearing

in mind that now only the �rst term in (2.60) 
ontributes, on a

ount of the e

�jzj

fa
tor in

the se
ond term.

Suppose instead we now take � at some intermediate angle 0 < � < �. If we take � =

1

2

�,

the exponential fa
tor in the se
ond term now just be
omes e

i jzj

, whi
h is a phase fa
tor

of unit modulus. At � =

1

2

�, therefore, the exponential has no damping e�e
t, and the two

terms in (2.60) have roughly equal size. Thus both terms, and their binomial-expansion

des
endants, will be in
luded in the asymptoti
 expansion at � =

1

2

�. As � ranges from

0 to �, the expression (2.60) (and its binomial des
endants) therefore gives the 
orre
t

asymptoti
 expansion, with the �rst term disappearing altogether at � = 0, and the se
ond

term disappearing at � = �.

Now let us 
onsider what happens in the region where �� < � < 0, i.e. when z is in

the lower-half 
omplex plane. It 
an be seen from Figure 11 that if we simply allowed �

to pass through 0 and be
ome negative in the previous integral de
omposition (2.56), then

the integration 
ontours for t would now have swung down below the negative real t-axis,


rossing over the bran
h 
ut running out to �1 in the 
omplex t-plane. On the other hand,

nothing untoward should happen when we swit
h over between � = +� and � = ��, sin
e

this 
orresponds to t running out along the positive real axis, where there is no bran
h 
ut.

To make sure that this works, we must now take

t = �

w e

�i �

jzj

=

w e

�i(�+�)

jzj

; (2.61)

t = 1�

u e

�i �

jzj

; (2.62)

for the rede�nitions in the two integrations. Note that the �rst rede�nition here di�ers from

the one in (2.57) that we used when 0 < � < �. This di�eren
e pre
isely takes a

ount of

the need to avoid the bran
h 
ut from t = 0 to t = �1. Following through the analogous

steps to our previous ones, we now �nd

M(a; b; z) �

�(b)

�(b� a)

jzj

�a

e

�i(�+�) a

+

�(b)

�(a)

jzj

a�b

e

jzj e

i�

e

i(a�
) �

; (2.63)

for �� < � < 0, repla
ing (2.60) that was valid for 0 < � < �.

Noti
e that as � runs from 0 to negative values, the �rst term here emerges from being

insigni�
ant (relative to the se
ond term), and takes over as the dominant term by the time

� is passing through �

1

2

�. Now at � = 0 the �rst term in (2.63) has a fa
tor e

�2� a i

in


omparison to the �rst term in (2.60) at � = 0. This makes it look as if there would be a
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dis
ontinuity in the asymptoti
 expansion of the fun
tion M(a; b; z) at � = 0, but a
tually

there isn't. The reason is pre
isely be
ause the term with the apparent dis
ontinuity is the

�rst term in (2.60) or (2.63), and this term is absent from the asymptoti
 expansion at

� = 0 on the grounds of its insigni�
an
e in 
omparison to the se
ond term. (Morse and

Fes
hba
h refer to it as being \in e
lipse" at � = 0, whi
h is quite an apt des
ription.)

On the other hand, we 
an see that the �rst term in the expansion (2.60) at � = �, where

it dominates over the se
ond term, is in pre
ise agreement with the �rst term in (2.63) at

� = ��. This would not have happened if we had not made the repla
ed the rede�nition

(2.57) by (2.61). Without the repla
ement, we would have got an answer at � = �� that

di�ered from the answer at � = pi by a fa
tor of e

2� a i

. This would have 
ontradi
ted the

fa
t thatM(a; b; z) is analyti
, and should therefore not exhibit any bran
h-point behaviour.

The summary of this rather long and tortuous dis
ussion is the following. The 
on
uent

hypergeometri
 fun
tion M(a; b; z) is itself analyti
 in the �nite 
omplex plane, and so

in parti
ular it has no bran
h points. However, the presen
e of the bran
h points in the


omplex t-plane in the integrand of (2.43) means that one has to be 
areful, when deriving

the asymptoti
 expansion ofM(a; b; z), to handle the 
hoi
e of integration 
ontour 
arefully.

When this is done properly, one �nds that the asymptoti
 expansion 
an be expressed as

a set of results valid in di�erent \pat
hes," 
orresponding to di�erent ranges for the phase

� of the 
omplex variable z. In ea
h pat
h the expansion naively appears to su�er from

not being single-valued, but a
tually everything is OK be
ause one is not allowed to let

the phase angle � stray far enough in any parti
ular expansion expression for the la
k of

single-valuedness in that expression to be
ome evident. The expressions for the asymptoti


expansions in ea
h pat
h join on smoothly and 
ontinuously to one another, as one swings

� around to pass from one pat
h to the next. This is despite the fa
t that 
ertain terms in

two neighbouring pat
hes 
an appear to have di�erent phase fa
tors (like the e

2� a i

fa
tor

we en
ountered above). The point is that su
h a term is always \in e
lipse" at the value

of � where the 
rossover between the pat
hes o

urs, and so the two expressions merely

di�er by a phase fa
tor that multiplies 0. The bottom line is that one ends up with a set

of expression for the asymptoti
 expansions that 
orre
tly des
ribe the large-z behaviour of

the single-valued fun
tion M(a; b; z).

The situation 
an be summarised mathemati
ally as follows. The asymptoti
 expansion

of the fun
tion �(a) �(b � a)M(a; b; z)=�(b), with z = e

i �

jzj and jz large is given by

� = �� : �(a) jzj

�a

;

�� < � < 0 : �(b� a) jzj

a�b

e

i(a�b) �

e

z

+ �(a) jzj

�a

e

�ia (�+�)

;
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� = 0 : �(b� a) jzj

a�b

e

z

;

0 < � < � : �(b� a) jzj

a�b

e

i(a�b) �

e

z

+ �(a) jzj

�a

e

ia (���)

;

� = � : �(a) jzj

�a

;

� < � < 2� : �(b� a) jzj

a�b

e

i(a�b) (��2�)

e

z

+ �(a) jzj

�a

e

ia (���)

;

� = 2� : �(b� a) jzj

a�b

e

z

; (2.64)

and so on.

3 Integral Transforms and Fourier Series

Integral transforms 
an provide a very useful te
hnique for 
onstru
ting the solutions of

di�erential equations. We have in fa
t already en
ountered several examples of integral

representations for solutions of di�erential equations, whi
h 
an be derived by applying

the methods of integral transforms. They are also very familiar in other 
ontexts, su
h as

the Fourier transform that has many appli
ations in mathemati
al physi
s, for example in

quantum me
hani
s and in wave theory. We shall begin with a general dis
ussion of the use

of integral transform methods for solving di�erential equations.

3.1 Solution of ODEs by Integral Transforms

The general idea of an integral transform is that we write a fun
tion y(z) as an integral,

y(z) =

Z

K(z; t) f(t) dt ; (3.1)

where K(z; t) is 
alled the Kernel Fun
tion. y(t) is said to be the integral transform of the

fun
tion f(t). For now, we shall leave the range of the integration over t unspe
i�ed; the


hoi
e for the integration range depends upon the details of the problem. It might sometimes

be a real integral between spe
i�ed limits, or it might instead be a 
ontour integral in the


omplex t-plane.

Let us begin with an example, to illustrate the basi
 idea and utility of an integral

transform. Suppose we wish to solve the se
ond-order ODE

z y

00

+ (b� z) y

0

� a y = 0 : (3.2)

This will be re
ognised as the 
on
uent hypergeometri
 equation, whi
h we en
ountered in

the previous 
hapter. A rather signi�
ant feature of this equation is that it is, of 
ourse, of

se
ond order in z derivatives, but the 
oeÆ
ients involve expli
it powers of z only up to the
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power 1. For reasons that will emerge in a moment, this means that it is useful to write

y(z) as an integral transform of the form (3.1), with the kernel fun
tion K(z; t) 
hosen to

be

K(z; t) = e

z t

: (3.3)

This, of 
ourse, has the property that

d

dz

e

z t

= t e

z t

;

d

2

dz

2

e

z t

= t

2

e

z t

; (3.4)

et
.The transformation (3.1) with a kernel of this exponential type is known as the Lapla
e

Transform.

Substituting (3.1) into the di�erential equation (3.2), we therefore obtain

Z

f(t)

�

z t

2

+ (b� z) t� a

�

e

z t

:dt = 0 (3.5)

Now of 
ourse the kernel e

z t

also has the property that

z e

z t

=

d

dt

e

z t

; (3.6)

whi
h is in some sense \dual" to (3.4). Thus we 
an write (3.5) as

Z

f(t)

�

t

2

d

dt

+ b t� t

d

dt

� a

�

e

z t

dt = 0 ; (3.7)

and so after an integration by parts we get

Z

�

t(t� 1)

_

f(t) + (2� b) t f(t) + (a� 1) f(t)

�

e

z t

dt = 0 ; (3.8)

where we use a dot to denote a derivative with respe
t to t. We have assumed here that

the boundary term from the integration by parts gives zero. This is up to us to arrange, by

making a suitable 
hoi
e of limits or 
ontour for the integration.

As we shall see later, for suitable 
hoi
es of kernel fun
tion K(z; t), su
h as e

z t

, the

transform (3.1) is invertible, in the sense that for every admissable y(z) there is a unique

fun
tion f(t) that produ
es it. In parti
ular, the fun
tion that produ
es 0 must itself be 0.

We may therefore 
on
lude from (3.8) that the integrand is zero, and so in other words

t(t� 1)

_

f(t) + (2� b) t f(t) + (a� 1) f(t) = 0 : (3.9)

This di�erential equation in the transform variable t, is, lu
kily, mu
h easier to solve than

the original equation (3.2). In parti
ular, it is only of �rst order in derivatives, unlike the

original equation, whi
h was of se
ond order. The reason for this is pre
isely be
ause of
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the fa
t that we drew attention to earlier, namely that the original equation (3.2) only

involved z to the powers 0 and 1 in the 
oeÆ
ients of y(z), y

0

(z) and y

00

(z). The \dual"

relation between (3.4) and (3.6) for the kernel fun
tion e

z t

means that ea
h derivative in

the original equation be
omes a multipli
ation by t inn the transformed equation, and vi
e

versa. (Noti
e that (3.9) has t to the powers 0, 1 and 2 in its 
oeÆ
ients of f(t) and

_

f(t).)

The transformation to the �rst-order di�erential equation (3.9) has in fa
t given us an

equation that 
an be solved very easily, namely

_

f

f

=

a� 1

t

�

b� a� 1

1� t

; (3.10)

whose solution is

f = t

a�1

(1� t)

b�a�1

: (3.11)

Thus we 
on
lude that the solution of the 
on
uent hypergeometri
 equation (3.2) is given

by

y(z) =

Z

t

a�1

(1� t)

b�a�1

e

z t

dt : (3.12)

We have, essentially, reprodu
ed the integral representation (2.43) of the previous 
hapter,

whi
h gave us the regular Kummer fun
tion M(a; b; z). A
tually, we have produ
ed some-

thing a little more general here, sin
e we have not yet spe
i�ed any parti
ular 
hoi
e for

the integration limits. In the integral representation (2.43) for M(a; b; z) the integral was

taken from t = 0 to t = 1, and indeed one 
an easily verify that the boundary term that we

dropped in getting from (3.7) to (3.8) vanishes at these endpoints. In fa
t, the boundary

term is

h

e

z t

t

a

(1� t)

b�a

i

; (3.13)

whi
h indeed vanishes at t = 0 and t = 1, provided that b > a > 0.

There are other ways of arranging for the boundary term (3.13) to vanish, instead of

taking the integration limits to be 0 and 1. For example, we 
ould take them to be 1 and1,

provided that the real part of z is negative, and that b > a. The freedom to 
hoose di�erent

possibilities for the 
ontour of integration re
e
ts the fa
t that the original di�erential

equation (3.2) has two independent solutions. By making an appropriate 
hoi
e, we 
an get

the se
ond solution U(a; b; z), Kummer's irregular fun
tion. We en
ountered examples also

in Chapter 1, where a di�erent 
hoi
e of 
ontour gave a di�erent and linearly-independent

solution of the di�erential equation, in the 
ontext of the Bessel fun
tions. Namely, we saw

that the integral representation (1.29) produ
ed the J

�

(z) Bessel fun
tion for one 
hoi
e of


ontour, but it produ
ed instead H

(1)

�

(z) or H

(2)

�

(z) for di�erent 
hoi
es of 
ontour.
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The integral transformation with the kernel e

z t

was parti
ularly ni
e in the example of

the 
on
uent hypergeometri
 equation be
ause of the fa
t that the 
oeÆ
ients in front of

y(z), y

0

(z) and y

00

(z) in (3.2) involve only the zero'th and �rst powers of z, implying that

the transformed di�erential equation (3.9) is only a �rst-order equation. Sometimes, a dif-

ferential equation may have higher powers of z that 
an be removed by making appropriate


hanges of the dependent and independent variables. The Bessel equation is an example of

this type, as is the modi�ed Bessel equation,

z

2

y

00

(z) + z y

0

(z)� (�

2

+ z

2

) y(z) = 0 : (3.14)

Taken as it stands, this would give us a se
ond-order di�erential equation for f(t) after

making the transformation (3.1) with K(z; t) = e

z t

. However, it is easy to see that if we let

y(z) = z

�

e

�z

w(z) ; (3.15)

and then let z =

1

2

~z, the modi�ed Bessel equation be
omes

d

2

w

d~z

2

+ (2� + 1� ~z)

dw

d~z

� (n+

1

2

)w = 0 : (3.16)

This is just the 
on
uent hypergeometri
 equation (3.2), with a = � +

1

2

and b = 2� + 1.

Indeed, this makes expli
it the way in whi
h the Bessel fun
tions and modi�ed Bessel

fun
tions arise as spe
ial 
ases of the 
on
uent hypergeometri
 fun
tions.

There are other examples, of 
ourse, where one 
annot redu
e the 
oeÆ
ients of the

y

00

(z), y

0

(z) and y(z) terms to 
onstants and linear powers, no matter how hard one tries

with 
hanges of variable. It may well happen, therefore, that the transformed equation is

\worse" then the original one. On the other hand, it may be that by making a di�erent


hoi
e for the kernel fun
tion K(z; t), the situation might like better. In fa
t the kernel

K(z; t) = e

z t

is the suitable one when dealing with an equation with one regular singular

point and one irregular singular point of a 
ertain parti
ular kind. Spe
i�
ally, this kernel

works well in the 
ase of the 
on
uent hypergeometri
 equation, whi
h has an irregular

singular point that 
omes from the 
on
uen
e of two regular singular points. In fa
t, we

obtained the equation by taking a limit of the hypergeometri
 equation, in whi
h its regular

singular points at z = 1 and z =1 fused together.

To transform the hypergeometri
 equation

z(1� z) y

00

(z) + [
� (a+ b+ 1) z℄ y

0

(z)� a b y(z) = 0 (3.17)

into a ni
e form, a di�erent kernel, namely K(z; t) = (z � t)

�

, is appropriate, where � is a


onstant that we shall 
hoose for 
onvenien
e. An integral transform using a kernel of this

63



type is known as an Euler Transform. Thus if we transform y(z) a

ording to

y(z) =

Z

(z � t)

�

f(t) dt; (3.18)

then substituting into (3.17) we get, after 
olle
ting powers of z,

Z

(z�t)

��2

h

(�+a)(�+b) z

2

�[�(�+
�1)+(2ab+�(a+b+1)) t℄ z+(� 
+a b t) t

i

f(t) dt = 0 :

(3.19)

Now re
all that we are free to 
hoose the 
onstant � at will. By 
hoosing � = �a or

� = �b, the term in z

2

in the large square bra
kets in (3.19) will disappear. The two 
hoi
es

are equivalent, so let us, w.o.l.o.g., 
hoose � = �a. The integral (3.19) now be
omes

Z

h

(z � t)

�a�1

[
� b t+ (a+ 1)(t � 1)℄ + (a+ 1) t (t � 1)(z � t)

�a�2

i

f(t) dt = 0 : (3.20)

Observe that we 
an write the last fa
tor in the large square bra
kets as

(a+ 1) t (t� 1)(z � t)

�a�2

= t (t� 1)

d

dt

(1� z t)

�a�1

; (3.21)

giving us

Z

h

(z � t)

�a�1

[
� b t+ (a+ 1)(t � 1)℄ + t (t� 1)

d

dt

(z � t)

�a�1

i

f(t) dt = 0 : (3.22)

Integrating by parts, and invoking the expe
ted uniquness of transform, we then dedu
e

that f(t) must satify the �rst-order di�erential equation

t (t� 1)

_

f(t)� [
� a+ (a� b� 1) t℄ f(t) = 0 : (3.23)

It is easy to solve this, to obtain f(t) = t

a�


(t � 1)


�b�1

, and hen
e we learn that the

solution of the hypergeometri
 equation is given by

y(z) =

Z

(t� 1)


�b�1

t

a�


(z � t)

�a

dt : (3.24)

This is very like the integral representation for

2

F

1

(a; b; 
; z) that we en
ountered in the

previous 
hapter, in equation (2.20); in fa
t if we send t to 1=t in (3.24), then up to an

unimportant 
onstant fa
tor we re
over the integral representation in (2.20). As usual,

we must 
hoose the 
ontour of integration su
h that the boundary terms arising from the

integration by parts give zero. From (3.22), and the solution for f(t), this means that

h

t

a�
�1

(t� 1)


�b

(z � t)

�a�1

i

(3.25)

should vanish when evaluated between the integration limits. One possible 
hoi
e, provided

that Re(
) > Re(b) > 0, is to take t to run from t = 1 to t =1. This is pre
isely equivalent
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to the integration range used in (2.20), bearing in mind the inversion t �! 1=t between

(2.20) and (3.24).

We have now seen two examples of integral transforms, one using the kernel K(z; t) =

e

z t

, for solving the 
onluent hypergeometri
 equation, and the other using the kernel

K(z; t) = (z� t)

�

, for solving the hypergeometri
 equation. In ea
h 
ase the kernel has ni
e

\re
ipro
al" properties, in that derivatives with respe
t to z and with respe
t to t bear some

ni
e relation to one another. To 
omplete this part of the dis
ussion, let us 
onsider the

pro
edure in a more general setting, leaving the 
hoi
e of kernel in the integral transform

(3.1) unspe
i�ed.

Suppose we wish to solve the se
ond-order ODE (ordinary di�erential equation)

L

z

[y(z)℄ � p

0

(z) y

00

(z) + p

1

(z) y

0

(z) + p

2

(z) y(z) = 0 : (3.26)

The subs
ript z on the di�erential operator L

z

de�ned by this equation indi
ates that the

derivatives are with respe
t to z:

L

z

= p

0

(z)

d

2

dz

2

+ p

1

(z)

d

dz

+ p

2

(z) : (3.27)

A
ting with this operator on the integral transform (3.1), we 
an take the di�erential

operator inside the integration, provided that the integral is suitably 
onvergent, to give

then gives

L

z

[y(z)℄ =

Z

L

z

[K(z; t)℄ f(t) dt : (3.28)

If the kernel K(z; t) has been 
hosen appropriately, the quantity L

z

[K(z; t)℄ 
an be re-

expressed as a di�erent di�erential operatorM

t

a
ting on some other fun
tion

f

K(z; t), this

time with the derivatives being with respe
t to t instead of z:

L

z

[K(z; t)℄ =M

t

[

f

K(z; t)℄ : (3.29)

Sometimes it may be the 
ase that

f

K(z; t) is a
tually the same fun
tion as K(z; t) itself.

As an example, re
all our integral transform of the hypergeometri
 equation, where we

used K(z; t) = (z� t)

�a

. From (3.17) and (3.22), it will be seen that

f

K(z; t) = (z� t)

�a�1

,

with

L

z

= z(1� z)

d

2

dz

2

+ [
� (a+ b+ 1) z℄

d

dz

� a b ;

M

t

= t(t� 1)

d

dt

+ 
� b t+ (a+ 1)(t� 1) : (3.30)

On the other hand, in the example of the 
on
uent hypergeometri
 equation, where the

kernel was K(z; t) = e

z t

, we see from (3.2) and (3.7) that in this 
ase we have

f

K(z; t) =
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e

z t

= K(z; t), and

L

z

= z

d

2

dz

2

+ (b� z)

d

dz

� a ;

M

t

= t(t� 1)

d

dt

+ b t� a : (3.31)

More generally, let us suppose that with a 
hoi
e of kernel fun
tion K(z; t) that is

appropriately \mat
hed" to the di�erential operator (3.27) for the spe
i�
 fun
tions p

0

(z),

p

1

(z) and p

2

(z) in question, there is some di�erential operator M

t

su
h that (3.29) is

satis�ed, whereM

t

has the form

9

M

t

= �

0

(t)

d

2

dt

2

+ �

1

(t)

d

dt

+ �

2

(t) : (3.32)

The idea now is that after a
ting on (3.1) with the di�erential operator L

z

, we use (3.29)

and then integrate by parts to move the t derivatives o�

f

K(z; t) and onto f(t):

L

z

[y(z)℄ =

Z

L

z

[K(z; t)℄ f(t) dt

=

Z

M

t

[

f

K(z; t)℄ f(t) dt

=

Z

�

�

0

(t) f(t)

d

2

f

K(z; t)

dt

2

+ �

1

(t) f(t)

d

f

K(z; t)

dt

+ �

2

(t) f(t)

f

K(z; t)

�

dt

=

Z

�

�

d(�

0

(t) f(t))

dt

d

f

K(z; t)

dt

�

d(�

1

(t) f(t))

dt

f

K(z; t) + �

2

(t) f(t)

f

K(z; t)

+

d

dt

h

�

0

(t) f(t)

d

f

K(z; t)

dt

+ �

1

(t) f(t)

f

K(z; t)

i�

dt

=

Z

�h

d

2

(�

0

(t) f(t))

dt

2

� (

d(�

1

(t) f(t))

dt

+ �

2

(t) f(t)

i

f

K(z; t) (3.33)

+

d

dt

h

�

0

(t) f(t)

d

f

K(z; t)

dt

�

f

K(z; t)

d(�

0

f(t)

dt

+ �

1

(t) f(t)

f

K(z; t)

i�

dt :

We may write this as

L

z

[y(z)℄ =

Z

�

f

K(z; t)M

t

[f(t)℄ +

dP (f;

f

K)

dt

�

dt ;

=

Z

f

K(z; t)M

t

[f(t)℄ dt+

h

P (f;

f

K)

i

; (3.34)

9

We are assuming here that the operator M

t

is of at most se
ond order in derivatives. This, of 
ourse,

is not guaranteed; it all depends on the details of the original di�erential operator L

z

, and on one's 
hoi
e

of kernel fun
tion K(z; t). In pra
ti
e, it is unlikely that we would want to use this method for solving the

di�erential equation if the transformed equation turned out to be of higher order in derivatives than the

original one. Sin
e we are assuming that we start with a se
ond-order di�erential operator L

z

, then we

may restri
t our dis
ussion to those 
ases where M

t

involves no higher than se
ond derivatives also. The

extension to higher-order operators is totally straightforward.
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whereM

t

is the adjoint of the operatorM

t

, and P (f;

f

K) is the the bilinear 
on
omitant of

f(t) and

f

K(z; t):

M

t

[f(t)℄ �

d

2

dt

2

(�

0

(t) f(t))�

d

dt

(�

1

(t) f(t)) + �

2

(t) f(t) ; (3.35)

P (f;

f

K) � �

0

(t) f(t)

d

f

K(z; t)

dt

�

f

K(z; t)

d(�

0

f(t)

dt

+ �

1

(t) f(t)

f

K(z; t) : (3.36)

The square bra
kets en
losing P (f;

f

K) in the se
ond line indi
ate that it is to be evaluated

at the endpoints of the integration.

Now, we make the usual kind of argument that we shall 
hoose a 
ontour for the inte-

gration in (3.1) su
h that the bilinear 
on
omitant P (f;

f

K) returns to its initial value at

the end of the 
ontour, so that the boundary term [P (f;

f

K)℄ in (3.34) is zero, and so we

simply have

L

z

[y(z)℄ =

Z

f

K(z; t)M

t

[f(t)℄ dt : (3.37)

Thus we 
on
lude that y(z) de�ned by (3.1) satis�es the original di�erential equation

L

z

[y(z)℄ = 0 if the fun
tion f(t) satis�es the di�erential equation M

t

[f(t)℄ = 0. Of 
ourse

the hope is that we have made a fortunate 
hoi
e for K(z; t) so that the transformed equa-

tion is easier to solve than the original one.

In our example of the hypergeometri
 equation, we see from (3.22), (3.35) and (3.36)

that in this 
ase we shall have

M

t

[f(t)℄ = �

d

dt

�

t(t� 1) f(t)

�

+

�


� b t+ (a+ 1)(t� 1)

�

f(t) ;

P (f;

f

K) = t(t� 1) f(t) (z � t)

�a�1

: (3.38)

On the other hand, for the example of the 
on
uent hypergeometri
 equation, it follows

from (3.7), (3.35) and (3.36) that in this 
ase

M

t

[f(t)℄ = �

d

dt

�

t(t� 1) f(t)

�

+ (b t� a) f(t) ;

P (f;

f

K) = t(t� 1) f(t) e

z t

: (3.39)

Both these examples are rather simpler than the general dis
ussion, be
ause the di�erential

operator M

t

is only of �rst order in derivatives, and so �

0

(t) = 0.

3.2 The Fourier Transform

We 
on
luded the previous subse
tion by 
onsidering the general 
ase of an integral trans-

form (3.1) where the kernel fun
tion K(z; t) is unspe
i�ed. We also looked at spe
i�
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examples, for whi
h we had K(z; t) = e

z t

and K(z; t) = (z � t)

�

. The integral trans-

form is 
alled the Lapla
e transform when K(z; t) = e

z t

, and the Euler transform when

K(z; t) = (z � t)

�

.

In pra
ti
e, there is a rather small number of di�erent kernels that turn out to be useful,

and most of these are 
losely related to the Fourier transform. The Fourier transform is the

name given to the 
ase where one uses K(z; t) = e

i z t

as the kernel fun
tion. Its relation to

the Lapla
e transform K(z; t) = e

z t

is obvious. We shall now pro
eed with a more detailed

study of the Fourier transform, sin
e it is one that is used extensively in mathemati
al

physi
s.

First, let us establish some notation. We shall de�ne the Fourier transform F (k) of a

fun
tion f(x) as follows:

F (k) =

1

p

2�

Z

1

�1

e

i k x

f(x) dx : (3.40)

The need for 2� fa
tors somewhere in the dis
ussion is inevitable, and stems from the

in
onvenient fa
t that a unit 
ir
le has 
ir
umferen
e 2� rather than 1. Putting in a

p

2� in

the de�nition of the Fourier transform gives the symmetri
al result that the inverse Fourier

transform is

f(x) =

1

p

2�

Z

1

�1

e

�ik x

F (k) dk : (3.41)

The fa
t that this is the inverse of the Fourier transform (3.40) is a non-trivial result, known

as Fourier's Theorem. We 
an prove it by viewing the Fourier transform as the limit of a

Fourier series. Before doing this, note that be substituting (3.40) into (3.41), we have an

equivalent statement of Fourier's theorem, namely that

f(x) =

1

2�

Z

1

�1

dk

Z

1

�1

dy e

i k (y�x)

f(y) : (3.42)

Yet another way of expressing this is that sin
e this is true for any (reasonable) fun
tion

f(x), it must be that

1

2�

Z

1

�1

dk e

i k (y�x)

= Æ(y � x) ; (3.43)

where Æ(y � x) is the Dira
 delta fun
tion, with the property that

f(x) =

Z

1

�1

f(y) Æ(y � x) dy ; (3.44)

for any (reasonable) fun
tion f(x). We shall postpone for now the issue of de�ning exa
tly

what 
onstitutes a \reasonable" fun
tion. We shall return to this later, when we dis
uss

68



the topi
 of Generalised Fun
tions, of whi
h the Dira
 delta fun
tion is an example.

10

Note

that by repla
ing the integration variable k by �k in (3.43), we immediately see that the

Dira
 delta fun
tion is symmetri
al:

Æ(y � x) = Æ(x� y) : (3.45)

Now for the proof of Fourier's theorem. First, 
onsider the Fourier series for fun
tions

f(x) de�ned on the interval �

1

2

b � x �

1

2

b. It is mu
h simpler to work with the Fourier

series using 
omplex exponentials, rather than dealing separately with sines and 
osines, so

we shall 
onsider the following expansion:

f(x) =

1

X

n=�1

a

n

e

2� inx=b

: (3.46)

Note that all the fun
tions e

2� inx=b

used in this expansion indeed have the property of

returning to their original values after x is advan
ed through a distan
e b, sin
e every term

in the series has this property. The Fourier 
oeÆ
ients a

n


an be determined by multiplying

(3.46) by e

�2� imx=b

, and integrating over the interval �b=2 � x � b=2. Sin
e we have

Z

b=2

�b=2

e

2� i (n�m) x=b

dx =

h

b e

2� i (n�m) x=b

2� i (n�m)

i

b=2

�b=2

= 0 (3.47)

when m 6= m, while it gives

Z

b=2

�b=2

dx = b (3.48)

when m = n, this implies that

Z

b=2

�b=2

f(x) e

�2� imx=b

dx = b a

m

: (3.49)

Substituting ba
k into (3.46) then gives

11

f(x) =

1

b

1

X

n=�1

Z

b=2

�b=2

f(y) e

2� in (x�y)=b

dy : (3.50)

We want to 
onsider the limit where the interval b is sent to in�nity. To do this, we

introdu
e a 
ontinuous variable k whi
h at dis
rete points k

n

takes the values k

n

= 2� n=b.

10

Mathemati
ians grumbled at �rst when Dira
 introdu
ed the delta fun
tion, maintaining that it wasn't

well-de�ned. Later, they introdu
ed the notion of generalised fun
tions, and made it respe
table. So instead

of the mathemati
ians' eyes glazing over when the physi
ists make dubious manipulations with ill-de�ned

fun
tions, now the physi
ists' eyes glaze over when the mathemati
ians make them rigorous in ex
rutiating

detail.

11

There are some interesting subtleties in the theory of Fourier series, asso
iated with what is known as

the Gibbs Phenomenon. We shall return to look at this later.
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The di�eren
e between adja
ent points is �k � k

n+1

� k

n

= 2�=b. We 
an rewrite (3.50)

as

f(x) =

1

2�

1

X

n=�1

�k

Z

b=2

�b=2

f(y) e

i k

n

(x�y)

dy : (3.51)

Now, as we take b �! 1, the interval �k between adja
ent values of k

n

goes to zero, and

the sum is repla
ed by an integral:

1

X

n=�1

�k �!

Z

1

�1

dk : (3.52)

Thus (3.51) be
omes

f(x) =

1

2�

Z

1

�1

dk

Z

1

�1

f(y) e

ik (x�y)

dy : (3.53)

This is pre
isely equivalent to (3.42) (send k to �k to get exa
tly (3.42)), and so Fourier's

theorem is proven.

One 
an easily prove some general properties of the Fourier transform. Trivially obvious

ones are that the Fourier transform is a linear operator a
ting on f to give F . Let us denote

the operation of taking the Fourier transform by L

F

(where the subs
ript F here stands for

Fourier), so that we have L

F

[f ℄ = F , L

F

[g℄ = G, et
. Then the linearity implies

L

F

[f + g℄ = L

F

[f ℄ + L

F

[g℄ ;

L

F

[a f ℄ = aL

F

[f ℄ ; (3.54)

where in the se
ond line the quantity a is an arbitrary 
onstant. Another general property

is that the Fourier transform of the derivative of a fun
tion is equal to �i k times the Fourier

transform of the fun
tion itself:

L

F

[f

0

(x)℄ = �i kL

F

[f(x)℄ = �i k F (k) : (3.55)

This is easily proved by writing down the Fourier transform of f(x) and then integrating by

parts to push the derivative onto the exponential e

i k x

. The assumption that the fun
tion

f(x) is a \reasonable" one justi�es the negle
t of the boundary terms at x = �1 that arise

from the integration by parts.

Parseval's Theorem:

A useful result that 
an be proven from the de�nition (3.40) of the Fourier transform is

the following, known as Parseval's Theorem:

Z

1

�1

jF (k)j

2

dk =

Z

1

�1

jf(x)j

2

dx : (3.56)
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To show this, we substitute from (3.40) into the left-hand side, inter
hange the orders of

integration, and then use the expression (3.43) for the Dira
 delta fun
tion:

Z

1

�1

jF (k)j

2

dk =

1

2�

Z

1

�1

dk

Z

1

�1

dx e

i k x

f(x)

Z

1

�1

dy e

�ik y

f(y) ;

=

Z

1

�1

dx

Z

1

�1

dy f(x) f(y)

�

1

2�

Z

1

�1

dk e

i k (x�y)

�

;

=

Z

1

�1

dx

Z

1

�1

dy f(x) f(y) Æ(x � y)

=

Z

1

�1

f(x) f(x) dx

=

Z

1

�1

jf(x)j

2

dx : (3.57)

(As usual, a more 
areful dis
ussion 
ould be given in whi
h the 
ir
umstan
es where the

inter
hange of the orders of integration are determined. In pra
ti
e, it is valid for all

\reasonable" fun
tions f(x).)

A small generalisation of Parseval's theorem 
an be obtained by repla
ing the fun
tion

f(x) by f(x) + g(x). Of 
ourse sin
e the Fourier transform (3.40) is a linear operation on

f(x), it trivially follows that the Fourier transform of f(x)+g(x) is F (k)+G(k), where F (k)

and G(k) are the Fourier transforms of f(x) and g(x) respe
tively. Thus we immediately

have from Parseval's theorem (3.56) that

Z

1

�1

jF (k) +G(k)j

2

dk =

Z

1

�1

jf(x) + g(x)j

2

dx : (3.58)

Expanding this out, we get

Z

1

�1

�

jF (k)j

2

+ jG(k)j

2

+ F (k)G(k) + F (k)G(k)

�

dk

=

Z

1

�1

�

jf(x)j

2

+ jg(x)j

2

+ f(x) g(x) + f(x) g(x)

�

dx : (3.59)

Using the original statement (3.56) of Parseval's theorem, we see that the �rst terms on

ea
h side are equal, as are the se
ond terms on ea
h side, and so

Z

1

�1

�

F (k)G(k) + F (k)G(k)

�

dk =

Z

1

�1

�

f(x) g(x) + f(x) g(x)

�

dx : (3.60)

If instead we were to repla
e f(x) by f(x)+i g(x) in (3.56), we would, by a similar argument,

have that

Z

1

�1

�

F (k)G(k) � F (k)G(k)

�

dk =

Z

1

�1

�

f(x) g(x) � f(x) g(x)

�

dx : (3.61)

Combining these two results, we arrive at the 
on
lusion that

Z

1

�1

F (k)G(k) dk =

Z

1

�1

f(x) g(x) dx : (3.62)
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The Convolution Integral:

Another useful property of the Fourier transform involves the following integral:

h(x) �

1

p

2�

Z

1

�1

dy f(y) g(x� y) ; (3.63)

whi
h is 
alled the 
onvolution of f and g. It is also sometimes known as the Faltung of f

and g, from the German for \folding." (It is a kind of shifted overlap between f(x) and

g(�x).) If the fun
tions f(x), g(x) and h(x) have Fourier transforms F (k), G(k) and H(k)

respe
tively, then we 
an show that

H(k) = F (k)G(k) : (3.64)

This is easily proven, by multiplying (3.63) by 1=(

p

2�) e

i k x

and integrating over all x. This

gives

H(k) =

1

2�

Z

1

�1

dy f(y)

Z

1

�1

dx g(x� y) e

i k x

: (3.65)

Now 
hange integration variable from x to z = x� y in the se
ond integral here, giving

H(k) =

1

2�

Z

1

�1

dy f(y) e

ik y

Z

1

�1

dz g(z) e

i k z

; (3.66)

and hen
e (3.64).

Note that the expression (3.63) is a
tually symmetri
al between f and g, as may be seen

by 
hanging the integration variable from y to z = x� y. Of 
ourse this symmetry is even

more obvious in the Fourier-transformed version (3.64).

Fourier Transforms and Quantum Me
hani
s:

The Fourier transform 
an be viewed as a mapping between position spa
e and mo-

mentum spa
e representations in quantum me
hani
s. Consider �rst wavefun
tion  

p

in

one spatial dimension that is an eigenstate of the momentum operator, with eigenvalue p:

 

p

(x) = 1=(

p

2�) e

i px=�h

. De�ning the wave-ve
tor k = p=�h, this is

 

k

(x) =

1

p

2�

e

ik x

: (3.67)

We shall refer to k simply as the momentum, sin
e up to an irrelevant 
onstant fa
tor,

that's what it is.

12

To map into momentum spa
e, we take the inverse Fourier transform of

12

In high-energy physi
s one usually takes the bull by the horns and 
hooses units where �h = 1, whi
h

saves a lot of tedious writing. The same is done for the speed of light, and for Newton's 
onstant, so that

one works in dimensionless units where �h = 
 = G = 1. For mysterious reasons, people in other dis
iplines

apparently prefer to 
arry around the redundant baggage of super
uous dimensionful 
onstants. There is

no physi
s 
ontained in these; it is merely a re
e
tion of one's de
ision to measure, for example, distan
e in

metres, while time is measured in se
onds, rather than \the time taken for light to travel a 
ertain number

of metres."
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k

0

(x), obtaining

	(k) =

1

p

2�

Z

1

�1

 

k

0

(x) e

�i k x

dx =

1

2�

Z

1

�1

e

i (k

0

�k) x

dx

= Æ(k � k

0

) ; (3.68)

where in the �nal step we have used the de�nition (3.43) of the Dira
 delta fun
tion.

Note that the rôles of k and x are reversed here, relative to our de�nition of the Fourier

transform (3.40) and the inverse transform (3.41). (This is a minor in
onvenien
e in the

notation, resulting from the fa
t that we 
onventionally give a positive-frequen
y wave a

time dependen
e e

�i! t

, whi
h implies that a positive-momentum wave has x dependen
e

e

i k x

. This does not mesh ideally with the 
onventional 
hoi
e of e

ik x

as the kernel in the

Fourier transform (3.40). C'est la vie!) There should be no 
onfusion on this point, but

just to 
larify our 
onventions, let us emphasise that we shall always refer to an integral

of the form 1=(

p

2�)

R


(�) e

i � �

d� as a Fourier transform, and an integral of the form

1=(

p

2�)

R


(�) e

�i � �

d� as an inverse Fourier transform, regardless of the names that we

happen to be using for the variables.

More generally, if a wave fun
tion  (x) in position spa
e is a superposition of momentum

eigenstates, then it has an equivalent representation 	(k) in momentum spa
e, given by

	(k) =

1

p

2�

Z

1

�1

 (x) e

�i k x

dx : (3.69)

The inverse of this, by Fourier's theorem, is

 (x) =

1

p

2�

Z

1

�1

	(k) e

i k x

dk : (3.70)

One 
an view this as the 
ontinuous limit of a sum over momentum eigenstates, and the

fun
tion 	(k) has the imterpretation of being the \amplitude" of the momentum eigenstate

e

i k x

in the sum. The derivative operator d=dx in position spa
e therefore be
omes simply

a multipli
ation by i k in momentum spa
e:

d (x)

dx

=

1

p

2�

Z

1

�1

(i k)	(k) e

i k x

dk : (3.71)

If we substitute (3.70), with

~

k as the integration variable, into the S
hr�odinger equation

�

d

2

 (x)

dx

2

+ V (x) (x) = E  (x) ; (3.72)

we therefore get

1

p

2�

Z

1

�1

d

~

k

�

~

k

2

	(

~

k) + V (x)	(

~

k)�E	(

~

k)

�

e

i

~

k x

= 0 : (3.73)
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Muliplying this by 1=(

p

2�) e

�i k x

and integrating over x, this gives

k

2

	(k) +

Z

1

�1

d

~

k	(

~

k)

�

1

2�

Z

1

�1

dxV (x) e

i (

~

k�k)x

�

�E	(k) = 0 ; (3.74)

sin
e the x integrations in the �rst and last terms simply give Dira
 delta fun
tions. The

x integration in the potential term gives 1=(

p

2�)V(k �

~

k), where V is the inverse Fourier

transform of the potential V , and so the S
hr�odinger equation in momentum spa
e has

be
ome

k

2

	(k) +

1

p

2�

Z

1

�1

V(k �

~

k)	(

~

k) d

~

k = E	(k) : (3.75)

The term involving the potential here is pre
isely of the form of the 
onvolution integral

(3.63), and in fa
t we e�e
tively re-derived the relation (3.64) here.

In quantum me
hani
s j (x)j

2

dx is the probability that the parti
le lies in the interval

[x; x+ dx℄ in position spa
e. In terms of the momentum-spa
e representation, j	(k)j

2

dk is

the probability that the momentum lies in the interval [k; k + dk℄. This 
an be established

by showing that the expe
tation value of the momentum, and all higher powers of the

momentum, are the same whether 
al
ulated in the position-spa
e or momentum-spa
e

representation. Parseval's theorem (3.56) tells us that the total probability for the parti
le

to be somewhere (= 1) is equal to the total probability for its momentum to be something.

More generally, from (3.62), we 
an learn that an overlap integral between two wavefun
tions

 

1

(x) and  

2

(x) in position spa
e is equal to the overlap integral evaluated in momentum

spa
e using their inverse Fourier transforms 	

1

(k) and 	

2

(k).

Poisson Summation Formula:

This 
an be expressed as follows. If F (k) is the Fourier transform of f(x), then

1

X

n=�1

f(n z) =

p

2�

z

1

X

n=�1

F (2� n=z) : (3.76)

To prove this, we simply use the de�nition of the inverse Fourier transform (3.41),

together with the usual assumption of the inter
hangeability of the orders of integration

and summation:

1

X

n=�1

f(n z) =

1

p

2�

Z

1

�1

dk

1

X

n=�1

e

�ik n z

F (k) ;

=

p

2�

Z

1

�1

dk

1

X

n=�1

Æ(k z � 2� n)F (k) ;

=

p

2�

z

Z

1

�1

dk

0

1

X

n=�1

Æ(k

0

� 2� n)F (k

0

=z) ;
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=

p

2�

z

1

X

n=�1

F (2� n=z) ; (3.77)

where in the step from line 2 to line 3 we 
hanged integration variable from k to k

0

= k z.

In the step from line 1 to line 2, we used the fa
t that

1

X

n=�1

e

inx

= 2�

1

X

n=�1

Æ(x� 2� n) : (3.78)

Essentially, this is the statement that the fun
tions e

inx

form a 
omplete set on the unit


ir
le: Taking our dis
ussion at the begining of the se
tion, and setting b = 2� in (3.50),

we see that for x restri
ted to a single 
overing of the unit 
ir
le, su
h as �� � x � �, we

must have

1

X

n=�1

e

inx

= 2� Æ(x) : (3.79)

Sin
e obviously e

inx

is periodi
 in x, with period 2�, it must be that when x is allowed

to range over the entire real line the fun
tion (3.79) must get repeated at intervals of 2�,

giving rise to the \
omb" of delta fun
tions, as in (3.78).

An example of the use of the Poisson summation formula is to evaluate 
ertain spe
i�


in�nite sums. Consider, for example, the fun
tion f(x) = 1=(1 + x

2

). Its Fourier transform

is given by

F (k) =

1

p

2� i

Z

1

�1

dx

e

i k x

1 + x

2

=

r

�

2

e

�jkj

: (3.80)

(This is easily proven using the 
al
ulus of residues: If k > 0, the integration 
ontour 
an

be 
losed o� with a large semi
ir
le in the upper-half x plane, and so the integral is given

by the residue of the pole at x = i. On the other hand if k < 0, the 
ontour 
an instead

be 
losed o� with a semi
ir
le in the lower-half plane, and now one pi
ks up the residue at

x = �i.) Applying the Poisson summation formula (3.76), we therefore get

1

X

n=�1

f(n z) =

1

X

n=�1

1

1 + n

2

z

2

=

�

z

1

X

n=�1

e

�2� jn=zj

;

=

�

z

�1

X

n=�1

e

2� n=z

+

�

z

1

X

n=0

e

�2� n=z

;

=

�

z

h

e

�2�=z

1� e

�2�=z

+

1

1� e

�2�=z

i

;

(3.81)

and hen
e

1

X

n=�1

1

1 + n

2

z

2

=

�

z


oth

�

�

z

�

: (3.82)
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Another appli
ation of the Poisson summation formula is the following. In the study

of di�erential operators su
h as the Lapla
e operator r

2

, it is sometimes ne
essary to

study the distribution of its eigenvalues �

n

, de�ned by �r

2

u

n

= �

n

u

n

, where u

n

are the


orresponding eigenfun
tions. This 
an be done by studying the so-
alled heat kernel

�(t) �

X

n

d

n

e

�� t �

n

; (3.83)

where d

n

is the degenera
y of the eigenvalue �

n

. Clearly, if �(t) is known for all t, then

this en
odes a lot of information about the values, and degenera
ies, of the eigenvalues. Of

parti
ular importan
e is to know how �(t) behaves for very small values of t, sin
e this gives

information about the limiting distribution of the eigenvalues for large �

n

.

Consider the following simple example, where we look at the 1-dimensional Lapla
ian

r

2

= d

2

=dx

2

on the unit 
ir
le. The eigenfun
tions are e

inx

, with eigenvalues �

n

= n

2

, and

so

�(t) =

1

X

n=�1

e

�� t n

2

: (3.84)

If we let f(x) = e

�x

2

=2

, then �(t) is of the form

P

n

f(n z) as in (3.76), with z =

p

2� t. But

the Fourier transform of e

�x

2

=2

is just e

�k

2

=2

, sin
e

1

p

2�

Z

1

�1

dx e

�x

2

=2

e

i k x

=

1

p

2�

Z

1

�1

dx e

�(x�i k)

2

=2

e

�k

2

=2

=

1

p

2�

Z

1

�1

dy e

�y

2

=2

e

�k

2

=2

= e

�k

2

=2

; (3.85)

where we have 
hanged integration variable from x to y = x� i k. Thus from (3.76) we �nd

that

1

X

n=�1

e

�� t n

2

=

1

p

t

1

X

n=�1

e

�� n

2

=t

; (3.86)

whi
h when re-expressed in terms of �(t), is nothing but

�(t) =

1

p

t

�

�

1

t

�

: (3.87)

Thus we have a remarkable relation between the large-t and small-t behaviour of the heat

kernel for the Lapla
ian on the 
ir
le. In parti
ular, sin
e it is obvious from (3.84) that at

large t have � � 1, we see that at small t we have

�(t) �

1

p

t

: (3.88)
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3.3 The Lapla
e Transform

The Lapla
e transform is 
losely related to the Fourier transform. In the Fourier transform

(3.40), it is evident that the fun
tion f(x) should obey some suitable fall-o� 
onditions

at x = �1, in order that the integral be well-de�ned. Essentially, we sould require that

f(x) �! 0 as x tends to �1. A
tually, sin
e we have adopted the prin
iple that delta-

fun
tions are a

eptable \fun
tions" we 
an be a little more tolerant. For example, we

would say that the 
onstant fun
tion f(x) = 1 has a valid Fourier integral (3.40), giving

F (k) =

p

2� Æ(k). More generally, f(x) 
an be a sine or 
osine or 
omplex exponential. For

example, if f(x) = 
os x, we shall have, from (3.40)

F (k) =

r

�

2

�

Æ(k � 1) + Æ(k + 1)

�

: (3.89)

As it stands, we 
annot, however, allow the fun
tion f(x) to have any divergent be-

haviour at large jxj. The Lapla
e transform is e�e
tively a modi�
ation of the 
on
ept

of the Fourier transform that does allow su
h kinds of divergent behaviour for f(x). The

Lapla
e transform F

L

(p) of f(x) is de�ned by

F

L

(p) =

Z

1

0

e

�p x

f(x) dx : (3.90)

It is evident that this will be well-de�ned for p > 0, even if f(x) has a power-law divergen
e

f(x) � x

m

as x tends to in�nity, for any arbitrarily large 
onstant m. Even if f(x) diverges

exponentially, f(x) � e

a x

, the integral will still be well-de�ned provided that p > a.

Obviously there is a rather 
lose 
onne
tion between the Lapla
e and the Fourier trans-

forms. In fa
t, if we de�ne f

+

(x) by

f

+

(x) =

(

f(x) x > 0

0 x < 0

; (3.91)

then the Fourier transform of f

+

(x) will be F

+

(k) given by

F

+

(k) =

1

p

2�

Z

1

0

f(x) e

i k x

dx ; (3.92)

and so evidently we shall have

F

L

(p) =

p

2� F

+

(i p) : (3.93)

We now need to �nd the inverse of the Lapla
e transform. Again, this 
an be done by using

what we already know about Fourier transforms.
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Suppose that we are 
onsidering a fun
tion f(x) that has an exponential divergen
e of

the form e

a x

as x tends to in�nity, where a is a 
onstant with a positive real part. We may

then introdu
e the fun
tion g(x), whi
h tends to zero as x tends to in�nity, where

f(x) = e


 x

g(x) ; (3.94)

and 
 is a real positive number su
h that 
 > Re(a). The Fourier transform G

+

(k) of the

fun
tion g

+

(x) given by

g

+

(x) =

(

g(x) x > 0

0 x < 0

(3.95)

is therefore well-de�ned, and so by Fourier's theorem we 
an then take the inverse Fourier

transform of G

+

(k) to get ba
k to g

+

(x). Hen
e we have

g(x) =

1

2�

Z

1

�1

dt e

ix t

Z

1

0

dy e

�i t y

g(y) : (3.96)

From (3.94) this means that

f(x) =

1

2�

e


 x

Z

1

�1

dt e

ix t

Z

1

0

dy e

�i t y

e

�
 y

f(y) : (3.97)

Now 
hange integration variable from t to s = 
 + i t. This gives

f(x) =

1

2� i

Z


+i1


�i1

ds e

s x

Z

1

0

dy e

�s y

f(y) : (3.98)

The y integral here 
an be re
ognised as giving pre
isely the Lapla
e transform F

L

(s) of

f(y), and so (3.98) allows us to read o� the inverse of the Lapla
e transform:

f(x) =

1

2� i

Z


+i1


�i1

ds e

s x

F

L

(s) : (3.99)

This is 
alled the Bromwi
h Integral. The integration 
ontour runs verti
ally in the 
omplex

s plane, along a line whose real part is 
. The real 
onstant 
 
an be 
hosen arbitrarily,

subje
t only to the requirement that the 
ontour should run to the right of any singularities

of F

L

(s). Any 
hoi
e of 
 that a
hieves this will do, and the answer does not depend on

whi
h su
h value for 
 we 
hoose.

Let us 
onsider an example. Suppose we are given the fun
tion

F

L

(s) =

1

s� a

; (3.100)

where a is a real 
onstant, and we are required to 
al
ulate its inverse Lapla
e transform.

The fun
tion F

L

(s) has a pole at s = a, so we should take a 
ontour in (3.99) with 
 > a.

The integral (3.99) will be

1

2� i

Z


+i1


�i1

ds

e

s x

s� a

: (3.101)
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This 
an be evaluated by means of the 
al
ulus of residues, by 
losing o� the 
ontour with

a large semi
ir
le swinging out and around to the west. This is justi�able for x > 0, sin
e

the fun
tion e

s x

will then be
ome exponentially small on the semi
ir
le as the radius goes

to in�nity. (See Part I of the 
ourse for a dis
ussion of su
h integrals.) The 
losed 
ontour

en
loses the simple pole at s = a, meaning that by the 
al
ulus of residues the integral just

evaluates to give

1

2� i

Z


+i1


�i1

ds

e

s x

s� a

= e

a x

; for x > 0 : (3.102)

Thus we have derived that the inverse Lapla
e transform of the fun
tion 1=(s� a) is e

a x

.

This result is easily veri�ed, by simply 
he
king what the Lapla
e transform of e

a x

is.

From (3.90), this will be

F

L

(p) =

Z

1

0

e

a x

e

�px

dx =

Z

1

0

e

�(p�a) x

dx

=

"

�

e

�(p�a) x

p� a

#

x=1

x=0

=

1

p� a

; (p > a) ; (3.103)

whi
h is indeed ba
k to where we started. Observe how the fun
tion e

a x

, whose Lapla
e

transform is 1=(s � a), does diverge at large x (assuming a is positive), and, a

ordingly,

the argument s of the Lapla
e transform F

L

(s) = 1=(s� a) is restri
ted to have s > a.

13

The Lapla
e transform obeys general properties that are 
losely analogous to those for

the Fourier transform that we dis
ussed prevsiouly. If we denote by L

L

the operation of

taking the Lapla
e transform, then we obviously have the linearity properties

L

L

[f + g℄ = L

L

[f ℄ + L

L

[g℄ ;

L

L

[a f ℄ = aL

L

[f ℄ ; (3.104)

where a is any 
onstant. The analogue of the Fourier result (3.55) is a little more involved

here, owing to the fa
t that the integration range in the Lapla
e transform is only semi-

in�nite. Thus if F

L

(p) = L

L

[f(x)℄ is the Lapla
e transform of f(x), then taking the Lapla
e

transform of f

0

(x) we get

L

L

[f

0

(x)℄ =

Z

1

0

dx e

�p x

f

0

(x) = pF

L

(p) +

h

e

�px

f(x)

i

x=1

x=0

= pF

L

(p)� f(0) : (3.105)

13

It might seem surprising that although the Lapla
e transform F

L

(s) is valid only for s > a, in our

evaluation of the inverse transform in (3.99) we pre
isely pla
e ourselves in the region Re(s) < a in the


omplex s-plane. This is just a manifestation of analyti
 
ontinuation: The Lapla
e transform F

L

(s) was


onstru
ted under the requirement s > a, but having obtained it, it 
an a
tually be analyti
ally extended

to the entire 
omplex s-plane, where it de�nes the meromorphi
 fun
tion 1=(s � a). It is this analyti
ally

extended fun
tion that is used in (3.99) to evaluate the inverse Lapla
e transform.
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The Lapla
e transforms of higher derivatives of f(x) 
an be 
al
ulated similarly. One �nds,

for example, that

L

L

[f

00

(x)℄ = p

2

F

L

(p)� p f(0) + f

0

(0) : (3.106)

Some Simple Lapla
e Transforms, and Their Uses:

First, let's take the Lapla
e transform of a few simple fun
tions, to see what we get.

The simplest of all is f(x) = 1, for whi
h the Lapla
e transform will be

L

L

[1℄ =

Z

1

0

dx e

�p x

=

1

p

: (3.107)

Of 
ourse we should note that this is true for p > 0. If p � 0 the Lapla
e transform of

f(x) = 1 does not exist.

Slightly less trivially, take f(x) = x

��1

. In order to have 
onvergen
e of the integral at

the lower limit, we must require Re(�) > 0. However, it doesn't matter how big the real

part of � gets, be
ause the exponential e

�px

in (3.90) will ensure 
onvergen
e at x = 1,

provided that p is positive. Then we shall have

L

L

[x

��1

℄ =

Z

1

0

dx e

�p x

x

��1

= p

��

Z

1

0

dy e

�y

y

��1

= �(�) p

��

: (3.108)

Finally, 
onsider taking f(x) = e

ia x

, whi
h is 
losely related to a 
ase we looked at

previously. This gives

L

L

[e

i a x

℄ =

Z

1

0

dx e

�x (p�ia)

=

1

p� i a

;

=

p+ i a

p

2

+ a

2

; (3.109)

again valid only for p > 0. Taking real and imaginary parts, we thus learn that the Lapla
e

transforms of the 
osine and sine fun
tions are given by

L

L

[
os a x℄ =

p

p

2

+ a

2

;

L

L

[sina x℄ =

a

p

2

+ a

2

: (3.110)

We saw earlier that one of the appli
ations of integral transforms is for solving di�erential

equations, by transforming them into a (hopefully!) simpler form. In fa
t we have studied

some fairly 
ompli
ated examples. For a little light relief, let's take a di�erential equation

from kindergarten, and solve that using the Lapla
e transform. Suppose we have a harmoni


os
illator, satisfying the familiar old equation

f

00

(x) + f(x) = 0 ; (3.111)
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subje
t, let's say, to the boundary 
onditions y(0) = 1, y

0

(0) = 0. Taking the Lapla
e

transform of (3.111), and making use of the results (3.105) and (3.106) above, we obtain in

general

p

2

F

L

(p) + F

L

(p)� p f(0)� f

0

(0) = 0 : (3.112)

This 
an then be solved algebrai
ally for F

L

(p), in terms of the boundary 
onditions on

f(x) and f

0

(x) at x = 0. In our example, we have f(0) = 1 and f

0

(0) = 0, and so

F

L

(p) =

p

p

2

+ 1

: (3.113)

As it happens, we saw just a few paragraphs previously what fun
tion has this as its Lapla
e

transform, namely 
os x (see (3.110)), and so from (3.113) we 
on
lude that the solution to

the di�erential equation (3.111), subje
t to the given boundary 
onditions, is

f(x) = 
os x : (3.114)

More generally, if f(0) and f

0

(0) were both non-vanishing, we would solve (3.113) to get

F

L

(p) = f(0)

p

p

2

+ 1

+ f

0

(0)

1

p

2

+ 1

: (3.115)

Again, by good 
han
e, we already know what fun
tion has this se
ond term as its Lapla
e

transform (see (3.110) again), and so here we 
on
lude that the original di�erential equation

(3.111) has the general solution

f(x) = f(0) 
os x+ f

0

(0) sinx : (3.116)

Of 
ourse if we had not been fortunate enough to know the fun
tions whose Lapla
e trans-

forms give the two terms in (3.115) we 
ould easily have derived them using the Bromwi
h

integral (3.99) for the inverse Lapla
e transform, mu
h as we did earlier in equation (3.101).

One might begin to wonder, though, whether in this example one were using a sledge-

hammer to 
ra
k a nut!

14

However, it is perhaps useful to have looked at the details of

how one solves a di�erential equation by Lapla
e transform methods in a trivially simple

example, sin
e essentially the same te
hniques are used in more 
ompli
ated 
ases too.

Convolution Theorem for the Lapla
e Transform:

There is a 
onvolution theorem for the Lapla
e transform that is 
losely analogous to the

one for the Fourier transform that we met previously. Re
alling that we �rst obtained the

14

There is a Latin phrase ignotum per ignotius, whi
h is perhaps appli
able here.
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Lapla
e transform from the Fourier transform by 
onsidering fun
tions of the form f

+

(x)

de�ned in (3.91), whi
h vanish for x < 0 and equal f(x) for x > 0, we should now use su
h

fun
tions in the type of 
onvolution integral (3.63) that we studied before. Thus we may

de�ne

h(x) =

Z

1

�1

f

+

(y) g

+

(x� y) dy =

Z

x

0

f(y) g(x� y) dy : (3.117)

(We do not in
lude a 1=

p

2� fa
tor here be
ause the overall 2� that 
omes from taking a

transform followed by its inverse is, by 
onvention, treated asymmetri
ally in the 
ase of the

Lapla
e transform.) The substantial point to noti
e is that the 
onvolution integral for two

fun
tions, in the 
ontext of a Lapla
e transform, is de�ned with integration limits running

from 0 to x:

h(x) �

Z

x

0

f(y) g(x� y) dy : (3.118)

This has happened, obviously, be
ause of the vanishing of f

+

(x) and g

+

(x) when x is

negative.

The most dire
t way to derive the 
onvolution theorem here is to take a Lapla
e trans-

form of (3.118). Thus we get

H

L

(p) =

Z

1

0

dx e

�p x

h(x) =

Z

1

0

dx

Z

x

0

dy e

�px

f(y) g(x� y)

=

Z

1

0

dy

Z

1

y

dx e

�px

f(y) g(x� y)

=

Z

1

0

dy

Z

1

0

dz e

�p (y+z)

f(y) g(z) =

Z

1

0

dy e

�p y

f(y)

Z

1

0

dz e

�p z

g(z)

= F

L

(p)G

L

(p) : (3.119)

In getting to the se
ond line, we have used the fa
t that the original region of integration

in the (x; y) plane is only the lower-triangular half of the positive (x; y) quadrant, i.e. the

triangular area between the positive x-axis and the line y = x. In the integration on line 1,

it is 
overed by verti
al strips, 0 < y < x, with x then running up to in�nity. It 
an instead

be 
overed by horizontal strips, y < x < 1, with y running from 0 to in�nity, and this is

what is done in line 2. To get to line 3, we then make a shift of the x integration variable,

to z = x � y, implying that now the se
ond integral runs from z = 0 to z = 1. The two

integrals now fall apart into a produ
t of two independent ones, giving the produ
t of the

Lapla
e transforms of f(x) and g(x). Thus we have 
on
luded that if F

L

(p), G

L

(p) and

H

L

(p) are the Lapla
e transforms of f(x), g(x) and h(x) respe
tively, and if h(x) is the


onvolution of f(x) and g(x) de�ned in (3.118), then

H

L

(p) = F

L

(p)G

L

(p) : (3.120)
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Noti
e, by the way, that the 
onvolution (or Faltung) de�ned in (3.118) has the same

symmetry property as the one de�ned in (3.63) for the Fourier transform. Namely, if we


hange integration variable in (3.118) from y to z = x� y, then we �nd that

h(x) =

Z

x

0

f(y) g(x � y) dy =

Z

x

0

g(z) f(x � z) dz : (3.121)

Again, the symmetry between f and g is even more manifest in the Lapla
e-transformed

expression (3.120).

Here is a simple example of the use of the 
onvolution theorem in solving a di�erential

equation. Like our previous example, we'll take the simple-harmoni
 equation, but this time

with a sour
e term:

f

00

(x) + f(x) = g(x) : (3.122)

For simpli
ity, suppose that f(0) = f

0

(0) = 0 here. Thus from (3.105) and (3.106), we �nd

that the Lapla
e transform of the equation is

p

2

F

L

(p) + F

L

(p) = G

L

(p) ; (3.123)

where G

L

(p) is the Lapla
e transform of the sour
e term g(x). Solving for F

L

(p) we get

F

L

(p) = G

L

(p)

1

p

2

+ 1

: (3.124)

Sin
e we 
an re
ognise the fa
tor 1=(p

2

+1) as the Lapla
e transform of sinx (see (3.110)),

we 
an invoke the 
onvolution theorem to give us

f(x) =

Z

x

0

g(x� y) sin y dy : (3.125)

This result is, of 
ourse, easily derivable by other methods too, but again it serves to

illustrate a method that has rather general appli
ability.

3.4 The Gibbs Phenomenon

In our proof of Fourier's theorem earlier, we invoked the easily-proven results for the dis
rete

analogue of the Fourier transform, namely the Fourier series. We remarked at that time that

there was an interesting subtlety in the Fourier expansion, known as the Gibbs Phenomenon.

Although it is slightly o� the mainstream of our present dis
ussion, it is perhaps interesting

to look at it here, sin
e it may not 
ome up again later.

The Gibbs phenomenon is seen when one 
onsiders the Fourier series expansion for a

fun
tion with a dis
ontinuity. This happens quite often in a Fourier series, sin
e it des
ribes

a periodi
 fun
tion whi
h 
an, for example, have a sudden \jump" when the end of the period
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is rea
hed. Let us 
onsider a 
on
rete example, of a square-wave with period 2�, whi
h 
an

therefore be expanded in terms of the 
omplex exponential fun
tions e

inx

, as

f(x) =

1

X

n=�1

a

n

e

inx

: (3.126)

Let us take f(x) to be

f(x) =

(

+1 0 < x < �

�1 � < x < 2�

: (3.127)

As in (3.49), the Fourier 
oeÆ
ients will then be given by

a

n

=

1

2�

Z

2�

0

dy e

�iny

f(y)

=

1

2�

Z

�

0

dy e

�in y

�

Z

2�

�

dy e

�iny

=

1

i� n

�

1� (�1)

n

)

�

; (3.128)

and they are non-zero only when n is odd. Noting that in the sum (3.126) we 
an then

repla
e n by �n as the summation variable when n is negative, we 
on
lude that the

square-wave (3.127) has the Fourier series expansion

f(x) =

4

�

1

X

r=0

1

(2r + 1)

sin[(2r + 1)x℄ =

4

�

�

sinx+

1

3

sin 3x+

1

5

sin 5x+ � � �

�

: (3.129)

Obviously the terms are getting smaller in magnitude as r in
reases, and so we 
an

expe
t that if we 
onsider a partial sum from r = 0 only as far as r = M , we should get

a better and better approximation to the square wave as M in
reases. And essentially,

this expe
tation is 
orre
t, ex
ept that there is one small subtlety that one might not have

foreseen. This 
an be best illustrated �rst by looking at a few plots of the partial sums in

(3.129) where only the �rst few terms are inl
uded. Below, in Figures 12-16, we give the

plots for the �rst term alone (a sine wave); the �rst two terms; the �rst three; the �rst ten,

and �nally the �rst twenty.

As 
an be seen from the various plots, it is indeed broadly-speaking true that as we

in
lude more and more terms in the sum, we get a 
loser and 
loser approximation to the

square wave (3.127). However, it also be
omes apparent that no matter how many terms we

in
lude, there always seems to be an \overshoot" every time there is a dis
ontinuity in the
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Figure 12: The �rst term in the Fourier series for the square wave
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Figure 13: The �rst 2 terms in the Fourier series for the square wave

square-wave. As we in
lude more terms in the sum, the width of the overshoot gets less, but

its height seems to be staying roughly the same. This overshoot is the Gibbs phenomenon.

We 
an show relatively easily that it will always be there, no matter how many terms we

in
lude in the sum. And indeed, it always leads to something like an 18% overshoot of the

true value of the fun
tion, at the dis
ontinuity. A
tually, we should remark that there is

more than just a single overshoot; as 
an be seen rather 
learly in Figure 16 there is a sort

of \ringing" phenomenon whi
h o

urs after the overshoot, whi
h takes a while to settle

down.

To study the Gibbs phenomenon, we go ba
k to the se
ond line in (3.128), and leaving

the integrals unevaluated, substitute the expressions for the 
oeÆ
ients a

n

ba
k into (3.126).

However, we shall now restri
t the summation to run only over the �nite range�N � n � N .
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Figure 14: The �rst 3 terms in the Fourier series for the square wave
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Figure 15: The �rst 10 terms in the Fourier series for the square wave

At the same time inter
hanging the orders of the integration and the summation, this gives

S

N

(x) =

1

2�

Z

�

0

dy

N

X

n=�N

e

in (x�y)

�

1

2�

Z

2�

�

dy

N

X

n=�N

e

in (x�y)

: (3.130)

We 
an expli
itly evaluate the sum here, sin
e it is just a geometri
al series:

N

X

n=�N

e

in (x�y)

= e

�N (x�y)

2N

X

n=0

e

in (x�y)

= e

�N (x�y)

"

1� e

i (2N+1) (x�y)

1� e

i (x�y)

#

;

=

sin[(N +

1

2

)(x� y)

sin[

1

2

(x� y)℄

: (3.131)

Plugging (3.131) into (3.130), and 
hanging integration variable from y to � = y � x in

the �rst integral, and � = 2� � (y � x) in the se
ond, we get

S

N

(x) =

1

2�

Z

��x

�x

d�

sin(N +

1

2

)�

sin

1

2

�

�

1

2�

Z

�+x

x

d�

sin(N +

1

2

)�

sin

1

2

�

: (3.132)
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Figure 16: The �rst 20 terms in the Fourier series for the square wave

Juggling the integration limits around, by using

Z

��x

�x

�

Z

�+x

x

=

Z

��x




�

Z

�x




�

Z

�+x




+

Z

x




=

Z

x

�x

�

Z

�+x

��x

; (3.133)

this 
an be rewritten as

S

N

(x) =

1

2�

Z

x

�x

d�

sin(N +

1

2

)�

sin

1

2

�

�

1

2�

Z

�+x

��x

d�

sin(N +

1

2

)�

sin

1

2

�

: (3.134)

Now let u = (N +

1

2

) �, leading to

S

N

(x) =

1

�

Z

(N+

1

2

)x

�(N+

1

2

)x

du

sinu

(2N + 1) sin[u=(2N + 1)℄

�

1

�

Z

(N+

1

2

)(�+x)

(N+

1

2

)(��x)

du

sinu

(2N + 1) sin[u=(2N + 1)℄

: (3.135)

Suppose now that we look in the region 0 < x < �, with x signi�
antly smaller than �.

The �rst integral in (3.135) will be mu
h larger than the se
ond one, when N is large. To

see this, note that the argument of the sine fun
tion in the denominator of the integrand,

u=(2N + 1) is ranging over the values

�

1

2

x � u=(2N + 1) �

1

2

x (3.136)

in the �rst integral, while in the se
ond integral it is ranging over the values

1

2

(� � x) � u=(2N + 1) �

1

2

(� + x) : (3.137)

Thus the denominator of the integrand never goes to zero in the se
ond integral, and this

integral tends to zero as N tends to in�nity. On the other hand, the denominator of the
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integrand does go to zero within the integration range in the �rst integral. At large N , this

gives, to a good approximation

S

N

(x) �

1

�

Z

1

�1

du

sinu

u

; for 0 < x < � ; (3.138)

when N gets very large. The integral here is a standard one (we evaluated it in Part I of

the 
ourse, using Cau
hy's prin
ipal-value integral, for example), implying that

S

N

(x) � 1 ; for 0 < x < � ; (3.139)

exa
tly as we would hope.

In the above, we assumed that x was greater than zero, but less than �, and that it is

held �xed as N was sent to in�nity. We showed that S

N

(x) then 
onverges to 1 as N is

sent to in�nity. Suppose instead we now arrange to sit on the peak of the Gibbs overshoot,

and see what happens there as N is sent to in�nity. This peak will o

ur when S

0

N

(x) has

its �rst zero as x in
reases from 0, and 
learly it will be at a very small value of x when

N is large. Let it o

ur at x = Æ. Again the se
ond integral in (3.135) will be negligible


ompared with the �rst when N gets large, and so for small positive x we know that S

N

(x)

is given approximately by

S

N

(x) �

1

�

Z

(N+

1

2

) x

�(N+

1

2

) x

du

sinu

u

; (3.140)

sin
e the argument u=(N +

1

2

) in the sine fun
tion in the denominator is so small that we


an approximate sin[u=(N +

1

2

)℄ by u=(N +

1

2

). This integral is expressible in terms of the

Sine Integral

Si(x) �

Z

x

0

du

sinu

u

: (3.141)

First, however, we need to di�erentiate (3.140) with respe
t to x, to �nd the �rst zero of

S

0

N

(x) as x in
reases from 0. This is easy, sin
e it just gives

S

0

N

(x) �

2

� x

sin[(N +

1

2

)x℄ : (3.142)

The �rst zero therefore o

urs at

x = Æ =

2�

2N + 1

: (3.143)

Plugging into the expression (3.140 for S

N

(x), we �nd that

lim

N!1

S

N

(�=(2N + 1)) =

1

�

Z

�

��

du

sinu

u

=

2

�

Si(�) = 1:1798 : : : : (3.144)
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Thus we see that the �rst peak ex
eeds the true value f(x) = 1 by about 18%, even as N is

sent to in�nity.

15

As 
an be seen from (3.143), the width of the overshoot spike gets smaller

and smaller as N in
reases, be
oming vanishingly small in the limit.

It may be re
alled, for example from Part I of the 
ourse, that the expressions in the

top line of (3.128) for the Fourier expansion 
oeÆ
ients a

n


an be shown to optimise the

a

ura
y of the expansion for the fun
tion f(x). Furthermore, these expressions for the

a

n

are optimal not only for the entire in�nite series expansion, but also if one takes only

a partial sum, as we have been doing. How does this square up with what we have been

seeing with the Gibbs phenomenon? After all, 18% is a pretty serious error! The resolution,

of 
ourse, is that as we have seen, the width of the overshoot-spike gets less and less as the

number of terms in
luded in the partial sum is in
reased. And when one says that the


hoi
e (3.128) for the a

n


oeÆ
ients in the Fourier series is the one that gives the \best �t"

to the fun
tion f(x), it should be re
alled that the measure of su

ess here is de�ned to be

a least-squares average. Namely, the 
hoi
e for the 
oeÆ
ients a

n

in (3.128) minimises the

quantity

Q

N

�

Z

2�

0

�

�

�

�

�

�

f(x)�

N

X

n=�N

a

n

e

inx

�

�

�

�

�

�

2

dx ; (3.146)

making it vanish in the limit where N goes to in�nity. It is evident that the overshoot-spikes

asso
iated with the Gibbs phenomenon will give no 
ontribution in the limit when N goes

to in�nity, sin
e their height is �nite (about 9% of the dis
ontinuity; in our example the

fun
tion jumps from �1 to +1 at x = 0), while their width goes to zero.

We 
an also examine the details of the \ringing" that is 
learly visible in Figure 16, by

looking at the values of the fun
tion S

N

(x) at its �rst few extrema. As before, the lo
ations

of these points are easily determined from the expression (3.142) for S

0

N

(x). Thus the m'th

zero of S

0

N

(x) is at

x = Æ

m

=

2�m

2N + 1

: (3.147)

15

Note that Morse and Feshba
h spoil an otherwise ni
e derivation of this result (at least in the edition

I have) by mis
al
ulating the lo
ation of the peak in the �nal stage of the 
omputation. They obtain the

expression (3.144) with limits ��=2 in the integral, and then make the false 
laim that

1

�

Z

�=2

��=2

du

sinu

u

= 1:1798 : : : (3.145)

although the a
tual value of their integral is 0:8726 : : :. Their mis-identi�
ation of the lo
ation of the peak

has a
tually set them at a point where S

N

(x) is smaller than 1. Even Homer nods, o

asionally!
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In the limit when N be
omes large, the value of S

N

(Æ

m

) is then given by

S(Æ

m

) =

1

�

Z

m�

�m�

du

sinu

u

: (3.148)

Taking m = 1 gives us ba
k the results (3.144) for the value at the �rst peak. As we take

m = 3; 5; 7; : : : we will get the values at the later peaks, while taking m = 2; 4; 6; : : : will

give the values at the su

essive troughs in between the peaks. The results for the �rst few

peaks and troughs are given below:

m = 1 3 5 7 9

S(Æ

m

) = 1.17898 1.06619 1.04021 1.02883 1.02246

The values of the �rst �ve peaks

m = 2 4 6 8 10

S(Æ

m

) = 0.90282 0.94994 0.96641 0.97475 0.97978

The values of the �rst �ve troughs

Finally, we may remark that although we fo
ussed on the example of a square-wave

fun
tion expressed as a Fourier series, the Gibbs phenomenon is a very general one. Any

time that one makes a series expansion of a fun
tion with dis
ontinuities, as a sum over

some 
omplete set of eigenfun
tions of a Sturm-Liouville operator, the same phenomenon

of overshoot-spikes and ringing will o

ur.

4 Integral Equations

4.1 Introdu
tion

The idea of formulating physi
al laws in terms of di�erential equations is a very familiar

and fundamental one. Indeed, all the fundamental laws of physi
s fall into this 
ategory;

for example the Maxwell equations, the Einstein equations of general relativity, and the

equations governing the fundamental parti
le intera
tions of the strong and weak intera
-

tions. There are times, however, when it turns out that a system 
an be more 
onveniently

des
ribed in terms of integral equations, and in some 
ases where one is dealing with an ef-

fe
tive ma
ros
opi
 theory rather than a fundamental one, a des
ription in terms of integal

equations be
omes a ne
essity.
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Let us begin by introdu
ing the most 
ommon types of integral equation that one en-


ounters. We shall dis
uss four types, whi
h are as follows:

Fredholm Equation of the First Kind:

f(x) =

Z

b

a

K(x; t)�(t) dt ; (4.1)

Fredholm Equation of the Se
ond Kind:

�(x) = f(x) + �

Z

b

a

K(x; t)�(t) dt ; (4.2)

Volterra Equation of the First Kind:

f(x) =

Z

x

a

K(x; t)�(t) dt ; (4.3)

Volterra Equation of the Se
ond Kind:

�(x) = f(x) + �

Z

x

a

K(x; t)�(t) dt ; (4.4)

In all four 
ases, �(t) is the unknown fun
tion that must be solved for. The kernel

K(x; t) is given, as is the fun
tion f(x) in the two equations of the se
ond kind. If the

fun
tion f(x) is zero, the equation is said to be homogeneous, sin
e it then s
ales uniformly

under a 
onstant s
aling of �(t). The quantity � the integral equations of the se
ond kind

is a 
onstant.

First, let's establish a mnemoni
 for remembering whi
h equation is whi
h. The di�er-

en
e between the Fredholm and the Volterra equations is that the Fredholm equations have

Fixed limits of integration, while the Volterra equations have Variable limits of integration.

Integral equations of the Se
ond kind have a Se
ond term as well as the integral, while the

equations of the First kind have Fewer terms. So that is easy!
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Noti
e that the Fredholm equation of the �rst kind looks very like the sort of equation we

have en
ountered already in our dis
ussion of integral transforms. Essentially, the equation


an be viewed as taking the transform of �(t) using the kernel K(x; t). In order to solve for

�(t), we therefore need to �nd the inverse transform. This would be very easy, for example,

if the given kernel fun
tion was K(x; t) = e

ix t

, sin
e then we would simply have to take the

inverse Fourier transform of the given fun
tion f(x) in order to obtain our solution �(t).

Another example of an integral equation that we have already en
ountered is the

S
hr�odinger equation re-expressed in momentum spa
e, whi
h we obtained in equation

(3.75):

(E � k

2

)	(k) =

1

p

2�

Z

1

�1

V(k �

~

k)	(

~

k) d

~

k ; (4.5)

where V is the inverse Fourier transform of the potential V (x). This is a homogeneous

Fredholm equation of the se
ond kind. We already have a 
lue about how one might solve

it, from the fa
t that we obtained it from an ordinary di�erential equation by taking a

Fourier transform.

We 
an, however, imagine a more general situation in this quantum-me
hani
al example,

for whi
h an integral equation beom
es unavoidable. Let us go ba
k to the original x-spa
e

S
hr�odinger equation,

�

d

2

 (x)

dx

2

+ V (x) (x) = E  (x) ; (4.6)

and re-write it as

d

2

 (x)

dx

2

+E  (x) =

Z

1

�1

V (x; x

0

) (x

0

) dx

0

: (4.7)

This be
omes identi
al to (4.6) if V (x; x

0

) is given by

V (x; x

0

) = V (x) Æ(x � x

0

) : (4.8)

When (4.8) holds the intera
tion is an ordinary lo
al one; the wavefun
tion at the point x

senses the potential at the same point x. More generally, one 
ould 
onsider situations with

non-lo
al intera
tions, in whi
h the wavefun
tion at x senses the e�e
ts from other positions

too, and this is what is des
ribed by (4.7). Su
h intera
tions would not be desirable in a

theory at the fundamental level (imagine the possible impli
ations for a
ausal faster-than-

light transfer of information, for example!).

16

However, they 
ould arise at some e�e
tive

level. The non-lo
al equation (4.7) is an integro-di�erential equation, with  (x) appearing

both via its derivatives, and within an integral.

16

In any 
ase the S
hr�odinger equation itself is 
learly not \fundamental" sin
e it is not even relativisti
.
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One 
an Fourier-transform the non-lo
al equation (4.7), mu
h as we did earlier for the

usual lo
al equation, to obtain

(E � k

2

)	(k) =

Z

1

�1

V(k;

~

k)	(

~

k) d

~

k ; (4.9)

where

V(k;

~

k) =

1

2�

Z

1

�1

dx

Z

1

�1

dy V (x; y) e

�i (k x�

~

k y)

: (4.10)

The previous lo
al 
ondition (4.8) 
an easily be seen to imply

V(k;

~

k) =

1

p

2�

V(k �

~

k) ; (4.11)

and then (4.9) redu
es to the previous result (4.9). The general result (4.9) is itself of the

form of a homogeneous Fredholm equation of the se
ond kind.

In this example, on
e we have generalised to the non-lo
al intera
tion, it is most natural

to write the equation for  (x) in the form of an integro-di�erential equation, and indeed

there is really no way to write a pure di�erential equation. This is inevitable, in view of

the non-lo
al nature of the intera
tion that is being des
ribed. We improve things, in some

sense, by transforming to momentum spa
e, sin
e now the equation be
omes purely an

integral equation.

In other examples one has a 
hoi
e as to whether to work with an equation in integral

or di�erential form. One might think that in su
h 
ases it is better to sti
k with the more

familiar di�erential form. There are, however, 
ertain advantages to having an equation

expressed in integral form, most notably assoi
ated with the issue of boundary 
onditions.

In a di�erential equation one has to supply information about the boundary 
onditions as

supplementary data. In an integral equation, on the other hand, the information about the

boundary 
onditions is e�e
tively already en
oded in the equation itself. This 
an be useful,

for example, if one is wanting to study the asymptoti
 properties of the solution, subje
t to

spe
i�
 boundary 
onditions, in a 
ase where approximate methods must be used.

An Integral Equation from a Di�erential Equation:

The point about the boundary 
onditions 
an be illustrated by 
onstru
ting an example,

somewhat arti�
ially. Consider the se
ond-order ordinary di�erential equation

y

00

(x) + p(x) y

0

(x) + q(x) y(x) = g(x) ; (4.12)

with spe
i�ed boundary 
onditions

y(a) = y

0

; y

0

(a) = y

0

0

: (4.13)
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This 
an be turned into an integral equation by the following pro
edure. First, we integrate

(4.12):

y

0

(x) = �

Z

x

a

p(t) y

0

(t) dt�

Z

x

a

q(t) y(t) dt+

Z

x

a

g(t) dt + y

0

0

: (4.14)

Noti
e that we have spe
i�ed the lower limit of the integration, and thus we have been able

to in
orporate the boundary 
ondition on y

0

(a) from (4.13). Now integrate the �rst term

on the right-hand side by parts, to get

y

0

(x) = �p(x) y(x) +

Z

x

a

�

p

0

(t)� q(t)

�

y(t) dt+

Z

x

a

g(t) dt + p(a) y

0

+ y

0

0

: (4.15)

Next, we integrate this equation again:

y(x) = �

Z

x

a

p(t) y(t) dt +

Z

x

a

ds

Z

s

a

dt

�

p

0

(t)� q(t)

�

y(t) +

Z

x

a

ds

Z

s

a

dt g(t)

+

�

p(a) y

0

+ y

0

0

�

(x� a) + y

0

: (4.16)

At this stage we note that by integrating by parts, we 
an show that for any fun
tion

f(t) we shall have

17

Z

x

a

ds

Z

s

a

dt f(t) = �

Z

x

a

ds s f(s) +

h

s

Z

s

a

dt f(t)

i

s=x

s=a

=

Z

x

a

dt (x� t) f(t) dt : (4.17)

Using this, we 
an re-express (4.16) as

y(x) = �

Z

x

a

dt p(t) y(t) +

Z

x

a

dt (x� t)

�

p

0

(t)� q(t)

�

y(t) +

Z

x

a

dt(x� t) g(t)

+

�

p(a) y

0

+ y

0

0

�

(x� a) + y

0

: (4.18)

Finally, we introdu
e fun
tions K(x; t) and f(x) de�ned as follows:

K(x; t) � (x� t)

�

p

0

(t)� q(t)

�

� p(t) ;

f(x) �

Z

x

a

dt (x� t) g(t) +

�

p(a) y

0

+ y

0

0

�

(x� a) + y

0

: (4.19)

(Note that these are 
onstru
ted purely from the original quantities given in the di�erential

equation and the boundary 
onditions.) We 
an now write the equation (4.18) in the �nal

form

y(x) = f(x) +

Z

x

a

K(x; t) y(t) dt : (4.20)

This 
an be re
ognised as a Volterra equation of the se
ond kind. Noti
e that all information

about the boundary 
onditions is already en
oded in the formulation of the equation. For

17

If you look at this dis
ussion in Arfken, he makes a real dog's breakfast of it, by 
onfusing the dummy

integration variable s and the integration limit x.
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example, if we set x = a in (4.20) we learn that y(a) = f(a), and from the de�nition of

f(x) in (4.19), this tells us that y(a) = y

0

.

Consider a simple example, where p(x) = 0 and q(x) = 1, and g(x) = 0, so that the

original di�erential equation (4.12) is just the simple harmoni
 os
illator,

y

00

(x) + y(x) = 0 : (4.21)

Suppose also that we 
hoose our boundary 
onditions so that y

0

= 0, y

0

0

= 1. From (4.19)

and (4.20) we therefore get the integral equation

y(x) = x+

Z

x

0

(t� x) y(t) dt : (4.22)

One 
an easily verify that this is satis�ed by y(x) = sinx. Of 
ourse this is not a \derivation"

of the solution, more a veri�
ation that what we already know a
tually works. We shall

dis
uss later how one goes about solving su
h equations.

An Example with Two End-point Boundary Conditions:

The derivation above was tailored spe
i�
ally to the 
ase where the boundary 
onditions

were as stated in (4.13). Clearly we 
ould adjust the derivation slightly to a

omodate

di�erent types of boundary 
ondition. Sin
e our prin
iple obje
tive at this stage is not

simply to turn familar di�erential equations into unfamiliar integral equations, we shall

not pursue this point in great detail here. Let us take one spe
i�
 example, with di�erent

boundary 
onditions, in order to illustrate the point. Consider again the harmoni
 os
illator

equation (4.21), but now with the boundary 
onditions

y(0) = 0 ; y(a) = 0 : (4.23)

Integrating (4.21) on
e gives

y

0

(x) = �

Z

x

0

y(t) dt+ y

0

(0) : (4.24)

We don't know yet what to substitute for y

0

(0), sin
e this is not one of the given boundary


onditions any more. So we pro
eed by integrating again, to get

y(x) = �

Z

x

0

(x� t) y(t) dt+ y

0

(0)x ; (4.25)

after using (4.17). Now we 
an set x = a, and thereby obtain an expression for y

0

(0):

y

0

(0) =

y(0)

a

+

1

a

Z

a

0

(a� t) y(t) dt ; (4.26)
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whi
h 
an be plugged ba
k into (4.25) to give

y(x) = �

Z

x

0

(x� t) y(t) dt +

x

a

Z

a

0

(a� t) y(t) dt : (4.27)

Using the identity that �(x� t) = t (a� x)=a� x (a� t)=a, we therefore get

y(x) =

Z

a

0

t

a

(a� x) y(t) dt+

Z

a

x

x

a

(a� t) dt : (4.28)

Now de�ne the kernel K(x; t) by

K(x; t) =

8

>

>

<

>

>

:

t

a

(a� x) ; t < x

x

a

(a� t) ; x < t

; (4.29)

in terms of whi
h (4.28) 
an be written as

y(x) =

Z

a

0

K(x; t) y(t) dt : (4.30)

This is a homogeneous Fredholm equation of the se
ond kind. The kernel K(x; t) here

is in fa
t the Green fun
tion for the equation (4.21), subje
t to the boundary 
onditions

y(0) = y(a) = 0. It is symmetri
 in x and t. If plotted as a fun
tion of t, it 
onsists of a

straight-line segment starting at the origin, and in
reasing with positive gradient 1 � x=a

until the point t = x is rea
hed. For t > x it is a straight-line segment with negative

gradient �x=a, whi
h rea
hes the t axis at t = a. The kernel is 
ontinuous at t = x, but

with a dis
ontinuity of �1 in its gradient there.

Solutions Using Fourier and Lapla
e Transforms:

We have already remarked that if one were presented with the following Fredholm equa-

tion of the �rst kind,

f(x) =

Z

1

�1

e

ix t

�(t) dt ; (4.31)

then solving for �(t) would be easy, sin
e we just re
ognise this as a Fourier transform.

Thus we 
an invoke Fourier's theorem and immediately write down the solution, namely

�(t) =

1

2�

Z

1

�1

e

�ix t

f(x) dx : (4.32)

Of 
ourse when we say that we have solved the equation here, what we mean is that we

have \redu
ed it to quadratures." Whether or not an expli
it 
losed-form solution 
an be

presented depends on whether the given fun
tion f(x) allows us to perform the integral

expli
itly.
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Similarly, there are other Fredholm equations of the �rst kind that 
ould be re
ognised

as Lapla
e transforms, or 
ertain other related transforms su
h as the Mellin or Hankel

transforms. In all su
h 
ases, a pro
edure for solving the equation by inverting the trans-

formation exists.

There are somewhat more general types of integral equation that 
an also be solved

by Fourier transform te
hniques, or by analogous pro
edures related to the other 
lassi�ed

integral transforms. Suppose we have the following Fredholm equation of the �rst kind:

f(x) =

Z

1

�1

k(x� t)�(t) dt ; (4.33)

where k(x � t) is the given kernel, and we wish to solve for �(t). Note that the kernel is

rather spe
ial here, being a fun
tion of just the single variable 
ombination (x� t). We 
an

re
ognise (4.33) as being nothing but a 
onvolution integral of the fun
tions k and �. As

we saw in our dis
ussion of Fourier transforms, the Fourier transform of the 
onvolution of

two fun
tions is proportional to the produ
t of the Fourier transforms of the two 
onvolved

fun
tions. The pre
ise statements, with all 2� fa
tors, are given in (3.63) and (3.64).

Comparing with (4.33), we see that the solution to (4.33) will be given by

�(x) =

1

2�

Z

1

�1

e

�ix t

F (t)

K(t)

dt ; (4.34)

where F (t) and K(t) are the Fourier transforms of f(x) and k(x):

F (t) =

1

p

2�

Z

1

�1

e

ix t

f(x) dx ; K(t) =

1

p

2�

Z

1

�1

e

ix t

k(x) dx : (4.35)

So provided that the ne
essary integrals 
an be evaluated, the solution for �(x) 
an be

obtained.

It is 
lear that a straightforward extension of this pro
edure allows us to solve the

Fredholm equation of the se
ond kind, again in the spe
ial 
ase where the kernel is k(x� t),

and where the limits of the integration are �1. Fourier transforming the integral equation

�(x) = f(x) + �

Z

1

�1

k(x� t)�(t) dt (4.36)

and using the 
onvolution theorem gives

�(t) = F (t) + �

p

2�K(t)�(t) ; (4.37)

whi
h 
an be solved for �(t) to give:

�(t) =

F (t)

1� �

p

2�K(t)

: (4.38)
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Finally, we take the inverse Fourier transform to get the solution as

�(x) =

1

p

2�

Z

1

�1

F (t)

1� �

p

2�K(t)

e

�ix t

dt : (4.39)

A similar te
hnique 
an be used to solve the Volterra equation of the se
ond kind, in the

spe
ial 
ase where the kernel is of the form k(x� t), and the lower limit of the integration

is 0:

�(x) = f(x) + �

Z

x

0

k(x� t)�(t) dt (4.40)

The integral here 
an be re
ognised as the 
onvolution integral (3.118) of the Lapla
e

transform. Thus using (3.120) we now 
on
lude that the solution for �(x) is

�(x) =

1

2� i

Z


+i1


�i1

F (s)

1� �K(s)

e

x s

ds ; (4.41)

where F (s) and K(s) are the Lapla
e transforms of f(x) and k(x). The integral in (4.41) is

the Bromwi
h integral for the inverse Lapla
e transform, whi
h we dis
ussed in se
tion 3.3.

Re
all that the real 
onstant 
 should be 
hosen so that the verti
al 
ontour of integration

lies to the right of any singularities of the integrand. The solution for the Volterra equation

of the �rst kind is easily derivable by this method too. Or, one 
an obtain it from (4.41)

by noting from the original Volterra equations (4.3) and (4.4) that if we repla
e f(x) by

�� f(x) in (4.4), and then send � �! 1, we obtain (4.3). Thus the solution to the Volterra

equation of the �rst kind, for the kernel k(x� t), will be

�(x) =

1

2� i

Z


+i1


�i1

F (s)

K(s)

e

x s

ds ; (4.42)

4.2 Degenerate Kernels

One might think from this title that we were about to stray o� the topi
 of integral equations

and undertake an investigation of improper goings-on in the OÆ
ers' Mess, but a
tually

this will be a perfe
tly respe
table analysis of a rather general te
hnique for solving integral

equations with a parti
ular type of kernel fun
tion K(x; t). In fa
t a less sensational-

sounding and more des
riptive terminology is Separable Kernels.

The idea is the following. Suppose the kernel fun
tion K(x; t) in an integral equation is

separable, in the sense that it 
an be written as a �nite sum of N fa
torised terms:

K(x; t) =

N

X

j=1

M

j

(x)N

j

(t) : (4.43)

A kernel K(x; t) that was of the form of any polynomial in x and t would thus be of this

degenerate type. So also would the kernel 
os(x� t), sin
e


os(x� t) = 
osx 
os t+ sinx sin t : (4.44)
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Suppose we wish to solve a Fredholm equation of the se
ond kind, for a degenerate

kernel of the form (4.43). Substituting into (4.2) we obtain

�(x) = f(x) + �

N

X

j=1

M

j

(x)

Z

b

a

dtN

j

(t)�(t) : (4.45)

The integrals appearing here are just 
onstants, say




j

=

Z

b

a

dtN

j

(t)�(t) ; (4.46)

and if we knew what they were we would have the solution for �(x), sin
e (4.45) gives

�(x) = f(x) + �

N

X

j=1




j

M

j

(x) : (4.47)

Of 
ourse we dont yet know what the 
onstants 


i

are, sin
e they are given by the integrals

(4.46) whi
h themselves involve the unknown fun
tion �(x). However, if we multiply (4.47)

by N

i

(x) and integrate, we get




i

= b

i

+ �

N

X

j=1

A

ij




j

; (4.48)

where we have also de�ned 
onstants b

i

and A

ij

by

b

i

=

Z

b

a

dxN

i

(x) f(x) ;

A

ij

=

Z

b

a

dxN

i

(x)M

j

(x) : (4.49)

Now, sin
e the 
onstants b

i

and A

ij

are simply 
al
ulated as integrals of given fun
tions, it

follows that we 
an view (4.48) as a system of N simultaneous equations for the N unknowns




i

. In matrix notation, these equations are

~
 =

~

b+ �A~
 ; (4.50)

or in other words

(1l� �A)~
 =

~

b : (4.51)

This 
an be solved for ~
 by inverting the matrix, to give

~
 = (1l� �A)

�1

~

b ; (4.52)

and so the problem is solved.

If the Fredholm equation is homogeneous, meaning f(x) = 0 and hen
e

~

b = 0, then

(4.51) be
omes

(1l� �A)~
 = 0 ; (4.53)
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whi
h does not in general admit any non-zero solution for ~
. The only way it 
an admit a

solution is if the determinant of (1l� �A) should happen to vanish. This is be
ause having

a solution of (4.53) would imply that ~
 was an eigenve
tor of (1l��A) with zero eigenvalue.

But the determinant of a matrix is equal to the produ
t of its eigenvalues, and hen
e a zero

eigenvalue means a zero determinant. Thus for a homogeneous Fredholm equation with a

degenerate kernel to have a non-zero solution, it would have to be that

det(1l� �A) = 0 : (4.54)

This is a standard eigenvalue equation, giving an N 'th-order polynomial equation for the

eigenvalues 1=� of the matrix A.

Let us 
onsider an example. Suppose we wish to solve the homogeneous Fredholm

equation

�(x) = �

Z

1

�1

(x+ t)�(t) dt : (4.55)

The kernel is degenerate, with

M

1

(x) = 1 ; M

2

(x) = x ; N

1

(t) = t ; N

2

(t) = 1 : (4.56)

Simple integration gives A

11

= A

22

= 0, A

12

= 2=3 and A

21

= 2, or in other words

A =

 

0

2

3

2 0

!

: (4.57)

The 
ondition (4.54) for the vanishing of the determinant then implies

�

�

�

�

�

1 �

2

3

�

�2� 1

�

�

�

�

�

= 0 : (4.58)

One easily �nds that this gives 1� 4�

2

=3 = 0, with solutions �

1

=

p

3=2 and �

2

= �

p

3=2,

with the 
orresponding eigenve
tors

~


1

= �

1

 

1

p

3

!

; ~


2

= �

2

 

1

�

p

3

!

; (4.59)

where �

1

and �

2

are arbitrary 
onstants. (One 
annot expe
t these to be determined

when solving a homogeneous equation.) Plugging these results ba
k into (4.47), we get the

solutions

� =

p

3

2

: �(x) =

1

2

p

3�

1

(1 +

p

3x) ;

� = �

p

3

2

: �(x) = �

1

2

p

3�

2

(1�

p

3x) : (4.60)
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4.3 Neumann Series Solution of Integral Equations

Another method that 
an sometimes be useful for solving integral equations is the Neu-

mann series expansion method. This 
an, in parti
ular, be useful as a way of getting an

approximate solution, up to the �rst few orders in an expansion parameter. The idea 
an

be illustrated by 
onsidering an inhomogeneous Fredholm equation of the se
ond kind:

�(x) = f(x) + �

Z

b

a

dtK(x; t)�(t) : (4.61)

The simplest way to des
ribe the idea of the method is as follows. Let us suppose that

� 
an be thought of as a \small parameter." We may therefore say that as a leading-

order approximation, the integral equation (4.61) is simply �(x) � f(x). Let us write this

leading-order result as

�

0

= f(x) : (4.62)

Sin
e � is assumed small, we 
an then make a next-order approximation in whi
h we use �

0

in pla
e of � in the integral in (4.61), and get the next approximation to the true solution:

�

1

(x) = f(x) + �

Z

b

a

dtK(x; t)�

0

(t) : (4.63)

Sin
e already have our expression for �

0

as the known fun
tion f(x), this means that

everything on the right-hand-side of (4.63) is in prin
iple 
al
ulable. The pro
ess 
an then

be repeated again and again, and at ea
h stage one uses the just-obtained approximation

�

n

in the integral in (4.61) in order to get the next approximation �

n+1

:

�

n+1

(x) = f(x) +

Z

b

a

dtK(x; t)�

n

(t) : (4.64)

It is helpful to express this in a slightly di�erent way, as follows. Viewing � as a

parameter for keeping tra
k of the order in the expansion, we may write

�

n

(x) =

n

X

k=0

�

k

u

k

(x) : (4.65)

Substituting this into the original integral equation (4.61), and then equating order-by-order

in � we 
learly obtain

u

0

(x) = f(x) ;

u

1

(x) =

Z

b

a

dt

1

K(x; t

1

) f(t

1

) ;

u

2

(x) =

Z

b

a

dt

2

Z

b

a

dt

1

K(x; t

1

)K(t

1

; t

2

) f(t

2

) ;

� � � (4.66)

u

n

(x) =

Z

b

a

dt

n

Z

b

a

dt

n�1

� � �

Z

b

a

dt

1

K(x; t

1

)K(t

1

; t

2

) � � �K(t

n�1

; t

n

) f(t

n

) :
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If we are lu
ky, the pro
edure des
ribed above will be a 
onvergent one, and the solution

to the original integral equation (4.61) will be given by

�(x) = lim

n!1

�

n

(x) =

1

X

k=0

�

k

u

k

(x) : (4.67)

Of 
ourse in pra
ti
e it might be that expli
tly performing the integrals (4.66) might get

too diÆ
ult to do on
e n gets very big, and so we might well just stop after a few terms

and view that as an approximate solution to the problem. But still, we should like to know

that the series would in prin
iple be 
onvergent.

Testing for 
onvergen
e is, of 
ourse, not going to be easy if we 
an't evaluate the

integrals, but we 
an a
hieve something, at least, by making the traditional sort of \worst-


ase" estimates. Thus we may observe from (4.66) that we shall have

j�

n

u

n

(x)j � j�

n

j jf j

max

jKj

n

max

jb� aj

n

: (4.68)

Here, jf j

max

means the maximum value of jf(x)j in the interval a � x � b, and jKj

max

means the maximum value of jK(x; t)j that it a
hieves anywhere in the ranges taken by x

and t. By Cau
hy's ratio test we 
an 
ertainly therefore be sure of 
onvergen
e if

j�j jKj

max

jb� aj < 1 : (4.69)

One 
an view this as a 
ondition on the smallness of the parameter � that is needed for


onvergen
e. Of 
ourse if this 
ondition is not satis�ed it may still be that the series is


onvergent, sin
e we made some pretty drasti
 worst-
ase assumptions in getting to (4.68).

Let us look at an example. Consider the following inhomogeneous Fredholm equation

of the se
ond kind:

�(x) = x+ �

Z

1

�1

dt (t� x)�(t) : (4.70)

For the leading approximation we have �

0

(x) = x, and plugging this into the integral in

(4.70) we then get

�

1

(x) = x+ �

Z

1

�1

dt (t� x) t = x+

2

3

� : (4.71)

Using this to 
al
ulate �

2

(x), and then this for �

3

(x) gives

�

2

(x) =

2

3

�+ (1�

4

3

�

2

)x ;

�

3

(x) =

2

3

� (1�

4

3

�

2

) + (1�

4

3

�

2

)x : (4.72)

Clearly we only ever generate x to the powers 0 and 1 in ea
h iteration, so we 
an usefully

simply the dis
ussion by making the de�nition

�

n

(x) = a

n

+ b

n

x ; (4.73)
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where a

n

and b

n

are 
onstants. Substituting this into

�

n

(x) = x+ �

Z

1

�1

dt (t� x)�

n�1

(t) ; (4.74)

we easily get

a

n

=

2

3

� b

n�1

; b

n

= 1� 2�a

n

: (4.75)

From this we 
an see that

a

n

=

2

3

� (1� 2�a

n�2

) ; b

n

= 1�

4

3

�

2

b

n�2

: (4.76)

It is a
tually ni
er at this point to de�ne a new eigenvalue � instead of �, related by

� =

p

3

2

� ; (4.77)

so that we have

a

n

=

�

p

3

� �

2

a

n�2

; b

n

= 1� �

2

b

n�2

: (4.78)

It is then easy to show by indu
tion that

a

2p

= a

2p�1

=

1

p

3

�

1� �

2

+ �

4

� �

6

+ � � � � (�1)

p

�

2(p�1)

�

; p � 1 ;

b

2p�2

= b

2p�1

= 1� �

2

+ �

4

� �

6

+ � � � � (�1)

p

�

2(p�1)

; p � 1 ; (4.79)

with a

0

= 0. The �rst few examples are

a

0

= 0 ; a

1

= a

2

=

�

p

3

; a

3

= a

4

=

�

p

3

(1� �

2

) ; a

5

= a

6

=

�

p

3

(1� �

2

+ �

4

) ;

b

0

= b

1

= 1 ; b

2

= b

3

= 1� �

2

; b

4

= b

5

= 1� �

2

+ �

4

; (4.80)

and so on.

The �nal solution �(x) to our equation (4.70) is obtained by taking the limit where n

goes to in�nity, so that �(x) = a+ b x where

a = lim

n!1

a

n

=

�

p

3

1

X

m=0

(�1)

m

�

2m

; b = lim

n!1

b

n

=

1

X

m=0

(�1)

m

�

2m

: (4.81)

Clearly these sums 
onverge if �

2

< 1, and they diverge if �

2

> 1, so in this 
ase the

Neumann series solution is 
onvergent for

j�j <

p

3

2

: (4.82)

A
tually, we 
an do rather better here, sin
e the in�nite series in (4.81) is geometri
,

and therefore expli
itly summable:

1

X

m=0

(�1)

m

�

2m

=

1

1 + �

2

: (4.83)
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This gives us the �nal solution

�(x) =

�

p

3 (1 + �

2

)

+

x

1 + �

2

: (4.84)

After rewriting in terms of � again, this is

�(x) =

2�

3 + 4�

2

+

3x

3 + 4�

2

: (4.85)

In fa
t we have been lu
ky here, sin
e now as a result of summing the in�nite series, we

have a
hieved an analyti
 
ontinuation of the Neumann series solution, whi
h is now valid

for all � ex
ept � = �i. It is easy to verify, by dire
t substitution, that (4.85) solves

18

the

original integral equation (4.70) for all values of �.

The same general idea of solving by the Neumann series methods 
an also be applied

to integral equations the Volterra type. To illustrate this, let us take an integral equation

that looks very like our previous example (4.70), ex
ept that now we take the integration

limit to involve x:

�(x) = x+ �

Z

x

0

dt (t� x)�(t) : (4.87)

Again, we think of � as an order parameter, and thus we have the leading-order solution �

0

=

x. Substituting this into the integral on the right-hand side gives us the next approximation

�

1

(x) = x+ �

Z

x

0

dt (t� x) t = x� �

x

3

6

: (4.88)

Substituting this again, we get

�

2

(x) = x+ �

Z

x

0

dt (t� x)

�

t� �

t

3

6

�

= x� �

x

3

6

+ �

2

x

5

120

: (4.89)

One further step yields

�

3

(x) = x� �

x

3

6

+ �

2

x

5

120

� �

3

x

7

5040

: (4.90)

It is pretty 
lear where this is leading:

�

n

(x) = �

�1=2

n

X

r=0

(�1)

r

(�

1=2

x)

2r+1

(2r + 1)!

: (4.91)

18

A
tually, of 
ourse, we 
ould have solved this even more simply without ever using a series solution. At

the stage where we observed that �

n

(x) was of the form (4.73) we 
ould have seen that this would 
ontinue

to be true in the limit where n tends to in�nity. Thus we 
ould simply have substituted the trial solution

�(x) = a+ b x into (4.70), and solved the two algebrai
 equations result from separately equating the terms

of orde 0 and 1 in x, namely

a =

2

3

� b ; b = 1� 2� a : (4.86)

This dire
tly gives the same result as (4.85). Bear in mind, therefore, that (4.70) is really a rather trivial

toy example that we are 
onsidering just to illustrate a few of the general methods that have been dis
ussed.
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In the limit as n tends to in�nity we get the 
omplete solution

�(x) = lim

n!1

�

n

(x) = �

�1=2

1

X

r=0

(�1)

r

(�

1=2

x)

2r+1

(2r + 1)!

= �

�1=2

sin(�

1=2

x) : (4.92)

We 
ould, of 
ourse, quite easily set up an iterative s
heme to derive this rigorously,

rather than simply observing the trend from the �rst few terms in the series. If we did so,

there would be no surprises or subtleties, and we would rather qui
kly get the result in a

dedu
tive way. Alternatively, we 
an just substitute (4.92) ba
k into the integral equation

(4.87), and verify that it is indeed a solution. Sin
e it is obvious from the Neumann series

approa
h that at ea
h stage in the iteration we get a spe
i�
 and unique result for �

n

, there


an only be one possible �nal answer and so if we �nd that our proposed solution indeed

solves the integral equation then we know that it is the unique answer.

Noti
e, by the way, that (4.87) with � = 1 is pre
isely the integral equation that we

produ
ed a while ba
ki in (4.22), by integrating the simple harmoni
 os
illator equation

y

00

+ y = 0, subje
t to the boundary 
onditions y(0) = 0 and y

0

(0) = 1. It is worth

emphasising again that when we solved the integral equations (4.70) and (4.87) above

we got unique answers in ea
h 
ase. This illustrates the point made earlier, about how

the boundary 
onditions are built into the integral equation. Noti
e also that these two

examples show us that the solution is radi
ally di�erent for a Volterra equation, as 
ompared

with a Fredholm equation with a very similar stru
ture.

5 Conformal Mappings

5.1 Introdu
tion

At this stage in the 
ourse we revert to a topi
 that is 
on
erned dire
tly with 
omplex

analysis. Re
all that if we have an analyti
 fun
tion

w(z) = u(x; y) + i v(x; y) ; (5.1)

where z = x+i y is a 
omplex variable, then the real and imaginary parts u(x; y) and v(x; y)

satisfy the Cau
hy-Riemann equations,

�u

�x

=

�v

�y

;

�v

�x

= �

�u

�y

: (5.2)

An equivalent, but more elegant, statement of the same thing is

�w

��z

= 0 ; (5.3)
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where we are treating z = x+ i y and �z = x� i y as independent variables here

19

�

�z

=

1

2

�

�x

+

1

2i

�

�y

;

�

��z

=

1

2

�

�x

�

1

2i

�

�y

: (5.5)

Thus if w(z) is analyti
 in some region, then it depends only on z but not on �z in that

region.

We 
an view the fun
tion w(z) as a mapping from the 
omplex z-plane into the 
omplex

w-plane. This mapping has some very important properties. The �rst of these is that it

preserves angles. To see what is mean by this, we need to 
onsider a pair of lines in the

z-plane, whi
h interse
t ea
h other at some point, at a 
ertain angle. As we tra
e along the

path of one of these lines in the z-plane, we shall �nd that an image of this path is tra
ed

out in the w-plane. If we look at the images of the two interse
ting paths in the z-plane, we

get two interse
ting paths in the w-plane. The statement about the preservation of angles

is that the angle between the interse
ting paths in the z-plane is equal to the angle between

the interse
ting paths in the w-plane.

To show this, let us suppose that the two lines in the z-plane interse
t at z = a. Let

us refer to these two lines as Path 1 and Path 2. Points on Path 1 near to z = a must


learly lie approximately on a straight line (any well-behaved path looks straight if a short

enough segment is examined), and so we 
an say that points on Path 1 near to z = a are


hara
terised by

dz

1

= jdz

1

j e

i �

1

; (5.6)

where �

1

measures the angle that Path 1 makes with the real axis. Likewise, near to z = a

points on Path 2 will be su
h that

dz

2

= jdz

1

j e

i �

2

: (5.7)

19

One might feel uneasy about this, sin
e we know that �z is not independent of z! The best way to 
larify

what is going on is to think initially of writing x� i y as ~z, and not yet to assume that x and y are real. It

is now 
lear that the equations z = x+i y, ~z = x� i y give a perfe
tly legitimate mapping from the 
omplex

variables (x; y) to the 
omplex variables (z; ~z), and so the equations

�

�z

=

1

2

�

�x

+

1

2i

�

�y

;

�

�~z

=

1

2

�

�x

�

1

2i

�

�y

: (5.4)

make perfe
t sense. Then, at the end of the day in any 
al
ulation, we �nally repla
e ~z by �z (the 
omplex


onjugate of z), whi
h amounts to 
hoosing the \real se
tion" where x and y are real. Having been through

this argument we 
an then see that in fa
t we 
an be impatient and not bother to wait untile the end of

the day before setting ~z = �z; we 
an just use �z right from the beginning, and keep at the ba
k of our minds

what it is that it really means. (If you weren't 
onfused about this point before reading this footnote, it

would probably have been better if you hadn't read it!)
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Tha angle between the two paths is 
learly �

2

� �

1

.

Now, we 
onsider the mapping into the 
omplex w-plane. We shall have

dw =

dw

dz

dz ; (5.8)

Now a 
ru
ial property of the derivative dw=dz of an analyti
 fun
tion is that at a given

point z it is independent of the dire
tion of dz. (This is a standard result, whi
h was proved

in Part 1 of the 
ourse.) Therefore if we write dw=dz = jdw=dzj e

i �

at z = a, we shall have

dw = jdw=dzj e

i �

dz (5.9)

at z = a, independent of the angle of dz. Thus the images of our two paths in the w-plane,

whi
h interse
t at w(a), will be 
hara
terised at nearby points by

dw

1

= jdw=dzj jdz

1

j e

i (�+�

1

)

; dw

2

= jdw=dzj jdz

2

j e

i (�+�

2

)

: (5.10)

Thus the angle between the two image paths in the w-plane is 
learly therefore (� + �

2

)�

(�+ �

1

) = �

2

� �

1

. This is the same as the angle between the original paths in the z-plane,

and so the result is established.

Another important point is that not only the angles but also the shapes of in�nitesimal

�gures in the z-plane are mapped into the same angles and shapes in the w-plane. To

understand this, we have to think about how to measure in�nitesimal separations in the


omplex plane. In the z-plane, Pythagoras' Theorem tells us that the distan
e ds between

to in�nitesimally separated points (x; y) and (x+ dx; y + dy) is given by

ds

2

= dx

2

+ dy

2

; (5.11)

whi
h 
an be written also as

ds

2

= dz d�z = jdzj

2

: (5.12)

The quantity ds

2

is 
alled the metri
 on the 
omplex z-plane. Similarly, in the 
omplex

w-plane we have a metri
 dŝ

2

, given by

dŝ

2

= du

2

+ dv

2

= dw d �w = jdwj

2

: (5.13)

In view of the fa
t that dw = (dw=dz) dz, and that if w(z) is analyti
 at z then dw=dz has

an unambiguous meaning independent of the dire
tion of dz, we see that there is a simple

relation between the metri
s in the w-plane and the z-plane:

dŝ

2

=

�

�

�

dw

dz

�

�

�

2

ds

2

: (5.14)
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This equation in fa
t summarises all the properties of the mapping between the z-plane

and the image in the w-plane. There is an overall s
ale fa
tor jdw=dzj, but aside from

that, in�nitesimal distan
es all map over in the same way. So we have established that

an in�nitesimal �gure in the z-plane is mapped into a similar �gure in the w-plane, with

all relative angles, and ratios of lengths, preserved. An in�nitesimal obje
t in the z-plane

maps into one that looks exa
tly the same in the w-plane, up to some overall rotation and

s
aling. This is what is meant by a 
onformal mapping, or 
onformal transformation.

5.2 Two-dimensional Lapla
e Equation

An important appli
ation of 
onformal mappings is for solving Lapla
e's equation in two

dimensions. Situations where this problem arises in
lude solving for ele
trostati
 potentials

in two dimensions, and solving hydrodynami
al equations in two dimensions. Of 
ourse su
h

problems might not only arise by 
onsidering two dimensions in its own right; they 
an also

arise if one has a three-dimensional 
on�guration that has a translational invarian
e along

one axis (for example, and in�nite 
ylinder lying along the z-axis). It turns out that the

methods of 
onformal mapping 
an be an extremely powerful tool.

To understand this, 
onsider a potential  (x; y) that satis�es Lapla
e's equation in two

dimensions:

r

2

 �

�

2

 

�x

2

+

�

2

 

�x

2

= 0 : (5.15)

Note that from (5.5) we have

�

�x

=

�

�z

+

�

��z

;

�

�y

= i

�

�

�z

�

�

��z

�

; (5.16)

and so we 
an also write the Lapla
ian as

r

2

�

�

2

�x

2

+

�

2

�x

2

= 4

�

2

�z ��z

: (5.17)

Now let us see what happens if we map into the 
omplex w-plane In the w-plane we

may 
onsider a fun
tion 	(u; v) whi
h is simply the image of the fun
tion  (x; y) in the

z-plane:

	(u; v) = 	(u(x; y); v(x; y)) =  (x; y) : (5.18)

What we shall now show is that if  (x; y) satis�es Lapla
e's equation in the z-plane, then

	(u; v) satis�es Lapla
e's equation in the w-plane. To see this, we note that

�

�z

=

�w

�z

�

�w

: (5.19)
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Noti
e that there is no term (� �w=�z) �=� �w here be
ause we are assuming that w(z) is

analyti
. By the same token, we shall have

�

��z

=

� �w

��z

�

� �w

: (5.20)

Furthermore, we also have

�

2

�z ��z

=

�

�

�

�w

�z

�

�

�

2

�

2

�w � �w

: (5.21)

The 
ru
ial point here is that for the same reason of analyti
ity of w(z), we don't pi
k up

any \extra" term where the �=�z derivative lands on the (� �w=��z) fa
tor in (5.20). So we

see that the Lapla
ians r

2

and

^

r

2

in the z-plane and w-plane respe
tively, whi
h are given

by

r

2

= 4

�

2

�z ��z

;

^

r

2

= 4

�

2

�w � �w

; (5.22)

are related by

r

2

=

�

�

�

�w

�z

�

�

�

2

^

r

2

: (5.23)

In parti
ular, if  (x; y) satis�es r

2

 = 0 in the z-pane, then the 	(u; v), the image of

 (x; y) in the w-plane as in (5.18), satis�es

^

r

2

	 = 0.

The upshot of this dis
ussion is that we now have a ni
e way of solving two-dimensional

potential-theory problems at our disposal. Namely, if we 
an solve Lapla
e's equation

subje
t to 
ertain boundary 
onditions in one parti
ular \
onformal frame," (say the z-

plane), then we immediately know that after making a 
onformal mapping to the w(z)

plane, the same potential will be a solution of Lapla
e's equation in the w-plane. Clearly

the original boundary 
onditions on  (x; y) will map over into \image" boundary 
onditions

on 	(u; v) =  (x; y). For example, if  (x; y) vanishes on a 
ertain 
urve in the z-plane,

then 	(u; v) will vanish on the image 
urve in the w-plane. Of 
ourse the idea is that we


hoose our 
onformal mapping judi
iously, to transform a diÆ
ult problem into an easier

one.

Let us 
onsider an example. Suppose we wish to solve for the two-dimensional ele
tro-

stati
 potential for the following situation. There is a 
ondu
tor lying along the entire y

axis, at x = 0, and 
ir
ular 
ondu
tor of radius R, 
entred on (x; y) = (d; 0). The in�nite

line is held at zero potential, and the 
ir
le is held potential  

0

. The problem is to �nd

the potential everywhere in the region x � 0, outside the 
ir
ular 
ondu
tor, by using the


onformal mapping te
hnique.

The whole art of solving problems like this is to spot the right 
onformal transformation

that maps the original problem into a simpler one. In this 
ase, fortunately, an artist has
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been here before us, and so we are invited to 
ontemplate the following transformation:

z = a tanh

iw

2

; (5.24)

where a is a 
onstant. Of 
ourse it would a
tually be the inverse of this transformation

that gave us w as a fun
tion of z. Writing w = u + i v, some simple t(h)rigonometri


manipulations lead us to

x = �

a sinh v


osh v + 
os u

; y =

a sinu


osh v + 
os u

: (5.25)

Thus if we look at the y-axis, x = 0, we see that it 
orresponds to taking v = 0, with u

ranging from �� to � as y ranges from �1 to 1. So we have found the image of the

in�nite line 
ondu
tor.

Now, 
onsider what happens if we eliminate u from the equations (5.25). We do this by

�rst noting that we have


os u = �

�

a

x

sinhv + 
osh v

�

;

sinu =

y

a

(
osh v + 
osu) = �

y

x

sinhv : (5.26)

Using 
os

2

u+ sin

2

u = 1, we therefore get

(

a

x

sinh v + 
osh v

�

2

+

y

2

x

2

sinh

2

v = 1 ; (5.27)

whi
h then 
an be rearranged as

(x+ a 
oth v)

2

+ y

2

=

a

2

sinh

2

v

: (5.28)

Thus we see that at �xed v we have a 
ir
le of radius ja= sinh vj, 
entred on the point

(x; y) = (�a 
oth v; 0) in the z-plane. This is exa
tly what we want, if we 
hoose a, and

the �xed value v

0

for v, su
h that

d = �a 
oth v

0

; R = �

a

sinhv

0

: (5.29)

It is easy to see that as u ranges from �� to � at this �xed value v = v

0

, the image in

the z-plane tra
es out the points on the 
ir
le of radius R, 
entred on (x; y) = (d; 0) in the

z-plane. This is shown in the �gure below.

We have su

eeded in mapping the geometry of the original problem into a 
onsiderably

simpler one; the original in�nite line and 
ir
ular 
ondu
tors have be
ome the two line
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d

R

z-plane w-plane

−π π

Figure 17: The line and 
ir
le in the z-plane are mapped to two parallel line segments in

the w-plane.

segments v = 0 and v = v

0

, with u in the range �� � u � � to 
over ea
h 
ondu
tor.

Furthermore, it is easy to 
he
k that the region between these two line segments in the

w-plane maps into the region between the two 
ondu
tors in the z-plane.

In fa
t lu
kily, we 
an think of extending the line segments to the entire range �1 � u �

1 in the w-plane, sin
e x and y are periodi
 in u and so as u traverses the entire real line

we just get multiple 
overings of the two 
ondu
tors. This is an important point, be
ause it

now means that we merely have to solve Lapla
e's equation between the two in�nitely-long

parallel \plates" at v = 0 and v = v

0

in the w-plane. Sin
e our boundary 
onditions are

that 	(u; v) = 0 on the 
ondu
tor at v = 0, and 	(u; v) =  

0

on the 
ondu
tor at v = v

0

,

it follows that the solution everywhere between the parallel plates in the w-plane is

	(u; v) =

v

v

0

 

0

: (5.30)

It only remains to express the potential (5.30) ba
k in terms of the (x; y) 
oordinates, in

order to obtain the required solution for the potential in the z-plane. From (5.24) we have

w = �2 i ar
tanh

�

z

a

�

; (5.31)

and so v is given by taking the imaginary part of this. Thus we arrive at the solution for

the potential in terms of x and y:

 (x; y) = �

2 

0

v

0

Re

h

ar
tanh

�

z

a

�i

: (5.32)
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Finally, we may note that sin
e the equipotentials in the w-plane are 
learly simply given by

v =
onstant, it follows that in the original z-plane the equipotentials are the 
ir
les de�ned

at �xed v by equation (5.28). (The \
ir
le" 
orresponding to v = 0 has in fa
t blown up to

be
ome the y-axis.)

5.3 S
hwarz-Christo�el Transformation

It should be 
lear from the previous dis
ussion that solving a potential theory problem in

two dimensions 
an be
ome rather simple, if one is able to �nd a 
onformal transformation

that maps the geometry of the original problem into a ni
er one, where Lapla
e's equation


an be easily solved. Of 
ourse the key word in the last senten
e is \if." It is not easy

to give general pres
riptions for how to �nd the required transformation, and at times the

pro
edure 
an seem more like an art than a s
ien
e. There is one 
lass of geometries,

however, for whi
h a general pres
ription 
an be given. Namely, we 
an 
onstru
t general

formulae for mapping an N -sided polygon in the z-plane onto the real axis of the w-plane.

An alarm-bell might perhaps start ringing at this point. At the beginning of our dis
us-

sion of 
onformal transformations mu
h was made of the fa
t that they are angle-preserving.

Now, we are proposing to \unwrap" a polygon and lay it out 
at along the real axis; what

is going on? There is, in fa
t, no paradox here. The 
ru
ial property that guaranteed

the angle-preserving nature of the 
onformal transformation was that the mapping w(z)

was assumed to be analyti
. Clearly, therefor, if we are to map a polygon into a line, the

fun
tion w(z) that does the job must have singularities at the verti
es of the polygon. We

shall now pro
eed to see how to 
onstru
t this fun
tion, known as the S
hwarz-Christo�el

transformation.

Consider �rst what happens if we have a fun
tion w(z) su
h that

dz

dw

= A (w � w

0

)

��

0

; (5.33)

where A is a 
omplex 
onstant, �

0

is a real 
onstant, and w

0

is a real 
onstant spe
ifying

a point on the real axis in the w-plane. Let us investigate what happens as w is allowed

to range along the real axis in the w-plane. Sin
e �

0

is not in general an integer, we must

make a de�nition about where to pla
e the bran
h 
ut. When w > w

0

, we de�ne the phase,

or argument, of (w � w

0

)

��

0

to be 0.

When w be
omes less than w

0

, we imagine that it detours in a little semi-
ir
le around

w

0

that takes it above the real axis, whi
h implies that the argument of (w � w

0

) will be
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�� �

0

when w < w

0

. Thus we have

arg

dz

dw

=

(

argA� � �

0

; w < w

0

argA ; w > w

0

(5.34)

Now, let us 
onsider what happens as w in
reases along the real axis. At all points, if

w advan
es by an in�nitesimal amount dw, we shall have arg dw = 0, sin
e dw is a real

quantity, and so from (5.33) and (5.34) it follows that we must have

arg dz =

(

argA� � �

0

; w < w

0

argA ; w > w

0

(5.35)

Thus we see that as w approa
hes w

0

from the left, a straight-line path in the z-plane is

tra
ed out, at an angle given by argA� � �

0

. After w has advan
ed to the right past w

0

,

a straight-line path is again being tra
ed out in the z-plane, bu now at an angle given by

argA. In other words, the total path in the z-plane 
onsists of a straight-line segment, then

a sharp turn to the left by an angle � �

0

, and then another straight-line segment going o�

at this new angle.

We now generalise the above 
onstru
tion, by 
hoosing w(z) to be su
h that

dz

dw

= A (w � w

0

)

��

0

(w � w

1

)

��

1

� � � (w � w

n

)

��

n

: (5.36)

This will map the real axis of the w-plane into a sequen
e of straight-line segments L

i

in

the z-plane, ea
h su

essive line segment swinging round to the left by an angle � �

i

relative

to the previous one. If we 
hoose the exponents �

i

to be su
h that

n

X

i=0

�

i

= 2 ; (5.37)

then the sum total of all the left-turning angle 
hanges will be 2�, and so provided we 
hoose

the starting and �nishing values of w appropriately, will shall have ni
ely 
onstru
ted a


losed polygon,

20

sin
e the sum of the interior angles will be 2�. (See �gure below.) All

that remains is to integrate (5.36), and to 
hoose the various 
onstants in the 
onstru
tion

appropriately, so as to des
ribe the desired polygon in the 
omplex z-plane.

21

Noti
e that

sin
e the 
orners in the polygon twist round to the left as we move along the real w axis in

the dire
tion of in
reasing w, the interior of the polygon is 
orresponds to the region above

the real axis in the 
omplex w-plane.

20

Note that we are not obliged to 
onstru
t a 
losed polygon. In fa
t, it is quite 
ommon that one uses a

S
hwarz-Christo�el transformation to 
onstru
t an open geometry with angles, su
h as a U-shaped 
hannel.

21

Of 
ourse there is also the little matter of inverting the resulting expression for z(w) that one obtains

by this means, in order to express w as a fun
tion of z. Re
all from our example in the previous se
tion

that we eventually need to know w(z), sin
e the potential is easily solved for in the w-plane, and must now

be re-expressed in terms of the z variable.
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z2
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w-plane

Figure 18: The S
hwarz-Christo�el transformation.

To see how the 
hoi
e of 
onstants will work, let us perform a 
ounting of parameters.

We spe
ify our N -sided polygon in the z-plane by spe
ifying the lo
ation of its N verti
es

z

i

(so we have n = N � 1, in terms of the integer n appearing in (5.36)). Ea
h of these is a


omplex number, so there are 2N real parameters needed here. After integrating (5.36) we

shall have

z(w) = z

0

+A

Z

w

dt (t� w

0

)

��

0

(t� w

1

)

��

1

� � � (t� w

n

)

��

n

; (5.38)

where z

0

is the (
omplex) 
onstant of integration. Thus we have at our disposal N real

parameters w

i

, a further (N � 1) real parameters from �

i

(re
alling that we have the single

real 
onstraint (5.37)), and 2 real parameters ea
h from A and z

0

. In total, therefore, we

have 2N + 3 real parameters available, and we need only 2N in order to mat
h up with

our required polgygon in the z-plane. This means that three of the lo
ations w

i


an in

fa
t be 
hosen arbitrarily, and then the rest of the parameters will be uniquely determined.

Usually, one 
hooses three of the w

i

so as to make life as simple as possible, from the point

of view of making the evaluation of the integral (5.38) as straightforward as possible.

Commonly, one of the transformed points w

i

is 
hosen to be at in�nity. Let us therefore

take w

0

= 1. If we send w

0

to in�nity, after �rst res
aling the 
onstant A by the fa
tor

(�w

0

)

�

0

, then 
learly (5.38) be
omes

z(w) = z

0

+A

Z

w

dt (t� w

1

)

��

1

(t� w

2

)

��

2

� � � (t� w

n

)

��

n

: (5.39)

Let us 
onsider some examples. A
tually, there are not really that many examples one


an easily 
onsider expli
itly, be
ause if there are too many fa
tors in the integrand in (5.38)

or (5.39) the integral be
omes diÆ
ult or impossible to evaluate. For example, already if
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we take (5.39) with two generi
 fa
tors only, we have quite a 
ompli
ated result:

z(w) = z

0

+A

Z

w

dt (t� w

1

)

��

1

(t� w

2

)

��

2

;

= z

0

+A

0

(w � w

2

)

1��

2

2

F

1

�

1� �

2

; �

1

; 2� �

2

;

w � w

2

w

1

� w

2

�

: (5.40)

The 
ases that lead to elementary fun
tions are degenerate triangles and re
tangles.

Consider �rst the example of an in�nite U-shaped 
hannel, formed by the lines x = 0 to

x =1 at y = 0 and at y = h, together with the line y = 0 to y = h at x = 0. Suppose that

we are interested in solving Lapla
e's equation inside this 
hannel, and thus we should like

to map the geometry into a simpler one. The idea here will be to \unwrap" the U-shaped


hannel, so that it ends up 
attened out along the real axis in the w-plane.

If you imagine 
oming in along the semi-in�nite line at y = h, from x = 1 down to

x = 0, the 
hannel then makes a 90-degree left turn at (x; y) = (0; h). It then makes another

90-degree left turn at (x; y) = (0; 0), before heading out to the east again along the real

axis. Thus we have �

1

=

1

2

and �

2

=

1

2

, and from (5.39) the required transformation is

z(w) = z

0

+A

Z

w

dt (t� w

1

)

�

1

2

(t� w

2

)

�

1

2

: (5.41)

E�e
tively, we are taking a degenerate triangle, with an exterior angle of � at the third

vertex lo
ated at z =1.

It is 
onvenient to make a symmetri
al 
hoi
e w

1

= �1, w

2

= 1 here, and so the integral

be
omes

z(w) = z

0

+A

Z

w

dt

p

t

2

� 1

= z

0

+A ar
oshw : (5.42)

We shall want the vertex at z = 0 to 
orrespond to w = 1, so

0 = z

0

+A ar
osh 1 = z

0

; (5.43)

while the vertex at z = ih must be at w = �1, and so

ih = A ar
osh (�1) = A i� : (5.44)

Thus the 
onformal mapping for this problem is

z =

h

�

ar
oshw ; (5.45)

whi
h, lu
kily, is easily inverted to give

w = 
osh

�

� z

h

�

: (5.46)
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It is easy to 
he
k that the real axis in the w-plane has indeed been mapped onto the

U-shaped 
hannel in the z-plane. The mapping is as follows:

�1 � w � �1 maps to z =1+ ih �! z = ih ;

�1 � w � 1 maps to z = ih �! z = 0

1 � w � 1 maps to z = 0 �! z =1 : (5.47)

This is depi
ted in the �gure below. Furthermore, it is also easy to see that points in the

upper-half w-plane map into the interior region of the 
hannel in the z-plane. If we take

z = x+

ih �

�

; (5.48)

then (5.46) gives

w = 
osh

�

x�

h

+ i �

�

= 
osh

�

x�

h

�


os � + i sinh

�

x�

h

�

sin � : (5.49)

The phase � of w is therefore given by

tan� = tanh

�

x�

h

�

tan � ; (5.50)

implying that as � goes from 0 to � (
orresponding to in
reasing the y value inside the


hannel), the phase in the w plane in
reases from 0 to �. For example at � =

1

2

�, 
orre-

sponding to sitting on the line at y =

1

2

h along the middle of the 
hannel, we �nd � =

1

2

�.

Thus the positive imaginary axis of the w plane maps onto the line running up the middle

of the 
hannel.

AB

C D

z-plane

A B C D

w-plane

h

-1 1

Figure 19: The U-sphaped 
hannel is mapped into the three line segments in the w-plane.

For another example, 
onsider two 
ondu
tors, one of whi
h 
onsists of the two semi-

in�nite lines (x � 0; y = 0) and (x = 0; y � 0) (i.e. the x and y axes in the positive
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quadrant), and the other 
onsists of the in�nite line y = �d. Suppose the �rst 
ondu
tor

is at potential zero, and the se
ond is at potential V = V

0

. This is an interesting geometry

in whi
h to study the ele
trostati
 potential, be
ause one 
an �nd an analyti
al solution

everywhere, and it will des
ribe the \fringing �eld" in the vi
inity of the sharp 90-degree

angle at the origin. We shall map this geometry onto the real axis in the w-plane. Let us


hoose 
onstants so that as w runs from �1 to 0, the z 
oordinate runs from z = �1� i d

to z = +1 � i d. Then, as w runs from 0 to 1, the z 
oordinate runs from z = +1 to

z = 0. Finally, as w runs from 1 to +1, the z 
oordinate runs from 0 to +i1. We therefore

have a 180-degree angle at the point 
orresponding to w = w

1

= 0, implying �

1

= 1, and

a (�90)-degree angle at the point 
orresponding to w = w

2

= 1, implying �

2

= �1. Thus

the S
hwarz-Christo�el transformation is determined by the equation

dz

dw

= A

p

w � 1

w

: (5.51)

whi
h integrates up to give

z = z

0

+ 2A

p

w � 1 + iA log

�

1 + i

p

w � 1

1� i

p

w � 1

�

: (5.52)

We have to be a little 
areful here, be
ause of the need to handle the bran
h 
uts properly.

First, we may note that w = 1 is supposed to 
orrespond to z = 0. This immediately tells

us that z

0

= 0. Next, we 
an determine A from the requirement that z should run along

the line from z = �1� i d to z = +1� i d as w runs from �1 to 0. In this region we have

p

w � 1 = i� ; (5.53)

where � is real and satis�es � > 1. Thus the logarithm gives

log

�

1 + i

p

w � 1

1� i

p

w � 1

�

= log

�

1� �

1 + �

�

= i� + log

�

�� 1

�+ 1

�

= i� + � ; (5.54)

where � is real and runs from 0 to �1 as w runs from �1 to 0. So we have

z = 2A i��A� + iA� (5.55)

in this region. We are wanting z to have a 
onstant imaginary part �i d along this line, and

so we must 
hoose

A =

i d

�

; (5.56)

giving

z = �i d�

2d

�

��

d

�

� : (5.57)
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It is 
lear, looking at how � and � are varying with w, that at large negative w the �

term dominates, sending the real part of z to large negative values. On the other hand as

w approa
hes 0 from the left, the � term dominates, sending the real part of z to large

positive values. So far, so good!

Now, 
onsider what happens for 0 < w < 1. Here we still have

p

w � 1 = i� with � real

and positive, but now 0 < � < 1. A

ordingly, the logarithm is now of the form

log

�

1� �

1 + �

�

= � ; (5.58)

with � real, running from � = �1 at w = 0 to � = 0 at w = 1. It follows from (5.52) that

this w segment does indeed map into the required segment in the z-plane, with z running

from +1 to 0.

Finally, 
onsider what happens when w > 1. We now have

p

w � 1 = � with � real and

positive here, so the region 1 < w � 1 
orresponds to 0 < � � 1. Thus we have

z =

2i d

�

��

d

�

log

�

1 + i�

1� i�

�

(5.59)

in this region. Now if we let p = log((1+i�)=(1� i�)) then we have i� = (e

p

�1)=(e

p

+1) =

tanh(p=2), and so

p = 2i ar
tan � ; (5.60)

whi
h is purely imaginary. We 
an now easily see that as w in
reases from 1 to 1, we do

indeed have z runnning from z = 0 up the imaginary axis to z = i1.

In summary, we have determined that the required 
onformal mapping is

z =

2 i d

�

p

w � 1�

d

�

log

�

1 + i

p

w � 1

1� i

p

w � 1

�

; (5.61)

with the bran
h point at w = 1 handled as dis
ussed above. The mapping is illustrated in

the �gure below.

Now, �nally, how do we use this transformation? We have mapped the problem of solving

Lapla
es' equation into one where we have the boundary 
onditions that the potential V = 0

on the positive real w-axis, and V = V

0

, whi
h is a given 
onstant, on the negative real

w-axis. This is easily solved, giving

V =

V

0

�

� = Im

�

V

0

�

logw

�

; (5.62)

where � is the polar angle in the w-plane. In other words, the equipotential surfa
es are

radial lines 
oming out from the origin. It is 
onvenient to view the potential V as the
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BC
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A B C D

1
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-d

Figure 20: The two 
ondu
tors in the z-plane are mapped into line segments in the w-plane.

imaginary part of an analyti
 fun
tion W :

W = U + iV =

V

0

�

logw : (5.63)

A question of interest here is to 
al
ulate the ele
tri
 �eld in the z-plane of the original

problem, so that we 
an see the fringing-�elds near the sharp 
orner at z = 0. Things are

a little bit tri
ky here, sin
e we are obviously not going to be able to invert the relation

z = z(w) in (5.61) expli
itly, to obtain w = w(z). Nonetheless, we 
an learn a lot from

what 
an be done. To do this, we note from (5.4) that

�W

�z

=

1

2

�U

�x

+

i

2

�V

�x

+

1

2i

�U

�y

+

1

2

�V

�y

;

�W

��z

=

1

2

�U

�x

+

i

2

�V

�x

�

1

2i

�U

�y

�

1

2

�V

�y

= 0 ; (5.64)

(the se
ond line vanishes be
ause W is analyti
). Adding these equations gives

�W

�z

=

�U

�x

+ i

�V

�x

; (5.65)

whi
h 
an be rewritten using the Cau
hy-Riemann equations as

�W

�z

=

�V

�y

+ i

�V

�x

: (5.66)

This is nothing but the statement that

E

x

� iE

y

= i

�W

�z

; (5.67)

where E

x

and E

y

are the x and y 
omponents of the ele
tri
 �eld in the z-plane. Using the


hain rule, �W=�z = (�W=�w) (�w=�z), and (5.51), we therefore �nd

E

x

� iE

y

=

V

0

d

p

w � 1

: (5.68)
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Now, 
onsider �rst the region near to w = 0, for whi
h we shall have

p

w � 1 � i, and

hen
e we get

E

x

� 0 ; E

y

�

V

0

d

: (5.69)

This is what we should expe
t; far over to the right-hand side, the ele
tri
 �eld should

look just like the �eld in a parallel-plate 
apa
itor, with potential di�eren
e V

0

and plate-

separation d.

In the region where Re(w) >> 1, we see that the �eld falls away, as it should high up

in the region where Im(z) is very large. In parti
ular, when w is real and large, we see

that E

y

= 0. This is exa
tly as it should be; the tangential 
omponent of ele
tri
 �eld at a


ondu
tor should vanish.

Now 
onsider the region with jwj >> 1, with no parti
lar restri
tion on the phase angle.

We see from (5.61) that we shall have

z �

2 i d

�

p

w ; (5.70)

so from (5.68) we shall have

E

x

� iE

y

�

2iV

0

� z

: (5.71)

Taking z = Re

i �

, with R >> 1, we need to 
onsider the region

1

2

� � � � �. Thus we have

E

x

� iE

y

�

2iV

0

�R

e

�i �

; (5.72)

whi
h implies that

E

x

=

2V

0

�R

sin � ; E

y

= �

2V

0

�R


os � : (5.73)

The ele
tri
 �eld lines form large quarter-
ir
les, starting perpendi
ular to the real z-axis at

large negative z, and swinging round to hit the imaginary z axis at large positive-imaginary

z.

Finally, the most interesting behaviour is 
lose to the sharp 
orner at z = 0. Sin
e this

is 
lose to w = 1 we 
an perform a Taylor expansion of (5.61) around w = 1, �nding

z =

2i d

3�

(w � 1)

3=2

+O((w � 1)

5=2

)) : (5.74)

This 
an then used to solve approximately for (w�1)

1=2

in terms of z, and then substituted

into (5.68). The answer is thus of the form

E

x

� iE

y

� 
 z

�1=3

: (5.75)

The ele
tri
 �elds be
ome singular as z approa
hes 0, as one would expe
t, and the pre
ise

nature of the �elds near to z = 0 is determinable.
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5.4 More on the Complex Plane

We shall 
lose this 
hapter with some further geometri
al investigation of the 
omplex plane.

This will also serve as an introdu
tion to the topi
 of the next 
hapter, whi
h will be some

elementary group theory. To begin, let us re
all that the 
omplex plane is 
losely related to

the so-
alled Riemann Sphere. The idea here is that by adding a single point, namely the

point at in�nity, to the ordinary 
omplex plane, we �nd that it now be
omes a spa
e that


an be mapped into a 
ompa
t and 
losed surfa
e, i.e. the Riemann Sphere. It may seem

a little strange that in�nity is viewed as a single point, but it 
an easily be understood my

making a stereographi
 proje
tion. The idea was introdu
ed in Part I of the 
ourse; here,

again, is the �gure showing the stereographi
 proje
tion:

North Pole

Riemann Sphere

Complex Plane

P

Q

Figure 21: The point Q on the 
omplex plane proje
ts onto the point P on the Riemann

sphere.

It is 
lear that any point Q in the �nite 
omplex plane proje
ts onto a well-de�ned point

P on the sphere. As Q moves further and further away from the origin (think of the south

pole of the sphere as tou
hing the 
omplex plane at z = 0), the 
orresponding point P gets


loser and 
loser to the north pole. Eventually, as jzj tends to in�nity, the 
orresponding
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point P rea
hes the north pole. It doesn't matter in whi
h dire
tion Q heads o� to in�nity;

by the time it gets there, P is at the north pole. Thus by adding the point at in�nity,

the 
omplex plane has been mapped into the 
ompa
t surfa
e of the sphere. For future

referen
e, let us remark that this is 
alled the 2-sphere, sin
e its surfa
e is 2-dimensional.

Let's now look at the stereographi
 proje
tion in a little more detail. To do this, it is


onvenient to take the sphere that sits on the 
omplex plane to have a diameter of 1, whi
h

means, of 
ourse, that its radius is

1

2

. So if we take the plane to have 
oordinates (x; y),

and take the third dire
tion, perpendi
ular to the plane, to be the t dire
tion (we 
an't 
all

it z be
ause that has already been earmarked for another purpose!), then the origin of the

sphere sits at (x; y; t) = (0; 0;

1

2

). The north pole sits at (0; 0; 1), and, of 
ourse, the south

pole is at (0; 0; 0).

What we are going to do now is to work out how the usual spheri
al polar 
oordinates

(�; �) for the point P on the sphere are related to the Cartesian 
oordinates (x; y) for the


orresponding point Q in the plane. For this purpose, it is useful to give the names (~x; ~y;

~

t)

to the Cartesian 
oordinates of points in the 3-spa
e. The sphere is 
learly de�ned by the

equation

~x

2

+ ~y

2

+ (

~

t�

1

2

)

2

=

1

4

: (5.76)

On the other hand the line running from the north pole at (0; 0; 1) to the point Q at (x; y; 0)


an be parameterised as

(~x; ~y; ~z) = (�x; � y; 1 � �) ; (5.77)

so that as � in
reases from 0 to 1 we move along the straight line from the north pole to Q.

The point P is lo
ated at the interse
tion of the surfa
e (5.76) and the line (5.77), whi
h

implies

�

2

(x

2

+ y

2

) + (

1

2

� �)

2

=

1

4

: (5.78)

Multiplying out the left-hand side, we see that the

1

4

on the right is 
an
elled, and so we

get

(1 + �

2

)�

2

� � = 0 ; (5.79)

where we have de�ned

�

2

� x

2

+ y

2

: (5.80)

One solution is � = 0, whi
h just tells us the obvious fa
t that the sphere and the line

interse
t at the north pole. We want the other interse
tion, whi
h therefore o

urs at the

value of � given by

� =

1

1 + �

2

: (5.81)
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From (5.77), it therefore follows that the point P is lo
ated at

(~x; ~y;

~

t) =

�

x

1 + �

2

;

y

1 + �

2

;

�

2

1 + �

2

�

: (5.82)

To 
onvert to the spheri
al polar 
oordinates (�; �), we re
all that this are related to

(~x; ~y;

~

t) by

~x =

1

2

sin � 
os� ; ~y =

1

2

sin � sin� ;

~

t�

1

2

=

1

2


os � ; (5.83)

remembering that the sphere has radius

1

2

and that its origin is lo
ated at (0; 0;

1

2

). These

equations 
an be better written as

~x+ i ~y =

1

2

e

i�

sin � ;

~

t = 
os

2

1

2

� : (5.84)

Comparing with (5.82), and de�ning z = x + i y in the 
omplex plane (this is why we


ouldn't use z for the 3'rd axis!), we see that


os

1

2

� =

jzj

p

1 + jzj

2

; e

i�

=

z

jzj

=

r

z

�z

; (5.85)

sin
e �

2

= x

2

+ y

2

= jzj

2

. We 
an neaten up this relation, by noting that the �rst equation

implies jzj = 
ot

1

2

�, and so we get

z = 
ot

1

2

� e

i�

: (5.86)

So (5.86) gives us the required mapping from a point P on the sphere with spheri
al polar


oordinates (�; �) to the 
orresponding point z in the 
omplex plane.

Re
all that we observed earlier that the way to measure the distan
e ds between the

in�nitesimally-separated points (x; y) and x+dx; y+dy) in the 
omplex plane is by Pythago-

ras' Theorem, giving

ds

2

= dx

2

+ dy

2

= dz d�z = jdzj

2

: (5.87)

This is 
alled the metri
 on the plane, sin
e it is the thing we use in order to measure

distan
es. Suppose now that an ant lives on the sphere, and that its job is to work out

the in�nitesimal distan
e between the points Q at (x; y) and Q

0

at (x + dx; y + dy) on

the plane. However, being short-sighted, it 
an only see the 
orresponding points P and

P

0

in the surfa
e of the sphere, to whi
h it assigns spheri
al polar 
oordinates (�; �) and

(� + d�; �+ d�). From (5.86), we see that the di�erentials are related by

dz = �

1

2


ose


2

1

2

� e

i�

d� + i 
ot

1

2

� e

i�

d� ; (5.88)

and hen
e the metri
 (5.87) in the 
omplex z-plane be
omes

ds

2

= jdzj

2

=

1

4(sin

1

2

�)

4

(d�

2

+ sin

2

� d�

2

) : (5.89)
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This is therefore the rule that the ant must use, for working out the distan
e between the

two points in the 
omplex plane. Noti
e, however, that it is a di�erent rule from the one

that the ant will use if it wants to work out how far it a
tually has to walk on the surfa
e

of the sphere, to get from P to P

0

. It is a simple geometri
al exer
ise to work out that the

distan
e between the points (�; �) and (�+ d�; �+ d�) on the sphere of radius

1

2

is given by

d~s, where

d~s

2

=

1

4

(d�

2

+ sin

2

� d�

2

) : (5.90)

This is just like the metri
 we would use on the earth, to work out the distan
e between any

two points. (We would do this by integrating up all the in�nitesimal 
ontributions along

the path, using (5.90).)

There are very important di�eren
es between the metri
 (5.87) on the 
omplex plane,

and the metri
 (5.90) on the sphere. In parti
ular, using the metri
 (5.90) we would dis
over

that there is 
urvature. This would show up, for example, if we measured the 
ir
umferen
e

L of a 
ir
le of radius R on the surfa
e of the sphere. This is easy to work out. We


an exploit the fa
t (whi
h we shall examine in more detail later on) that the sphere is a


ompletely symmetri
al obje
t, and any point on it is just like any other point (before we

start atta
hing 
ities, and mountians, and things like that). Thus when 
onsidering a 
ir
le

of radius R on the sphere, we may as well take the 
entre of the 
ir
le to be at the north

pole, sin
e that makes the 
al
ulation easy.

To get a 
ir
le of radius R, we must therefore walk from the north pole (� = 0) to a

point at 
oordinate �

0

su
h that R =

1

2

�

0

(re
alling that we are stu
k with a sphere of

radius

1

2

here). We then measure the 
ir
umferen
e of this 
ir
le by walking around the

line of latitude, at �xed � = �

0

, until the azimuthal angle � has advan
ed through 2�.

The distan
e walked around the 
ir
umferen
e is therefore L =

1

2

sin �

0

, and so the ratio of


ir
umferen
e to radius is given by

L

R

= 2�

sin �

0

�

0

; (5.91)

where �

0

= 2R. We see that as expe
ted, if �

0

is very small, 
orresponding to a very small


ir
le, it has the usual property that L=R = 2�. Lo
ally, we don't noti
e that the earth is


urved. As the radius of the 
ir
le gets bigger, however, the ratio L=R be
omes less than

2�, revealing that the surfa
e of the earth is 
urved. The most extreme situation o

urs

when the radius of the 
ir
le be
omes so big that �

0

= �, i.e. when R = �=2 on our earth of

radius

1

2

. Now, the 
ir
umferen
e of the 
ir
le is in fa
t zero. All we have to do to traverse

the 
ir
umferen
e in this extreme 
ase is to stand at the south pole and not walk at all!
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Let us return to our ant, and the stereographi
 proje
tion from the 
omplex plane. Just

like ourselves on the earth, the ant will be aware that it lives on a 
urved spa
e, sin
e it

measures its own walking distan
es using the sphere metri
 (5.90). On the other hand,

during its working hours when its job is to measure distan
es in the 
omplex plane, it has

been instru
ted to use the rule given by the metri
 metri
 (5.89) for reporting distan
es.

Using this rule, it will �nd no 
urvature, and all 
ir
les, no matter how big, will have a ratio

of 
ir
umferen
e to radius that is equal to 2�. The point is that even though it is written

in terms of (�; �) 
oordinates, the metri
 (5.89) is nothing but a restatement of the original


at metri
 jdzj

2

on the 
omplex plane.

The point of all this preamble was to draw a distin
tion between two very di�erent ideas.

The �rst is that we 
an 
hoose to use any (well-behaved) 
oordinate system we like in order

to spe
ify the lo
ations of points in a spa
e. Thus, for example, on the 
omplex plane we


an simply spe
ify a point Q by its Cartesian x and y 
oordinates, 
onveniently grouped

together into the 
omplex 
oordinate z = x+i y. Alternatively, we 
an if we wish spe
ify the

same point by its image in the stereographi
 proje
tion, with spheri
al polar 
oordinates

(�; �) that are related to z by equation (5.86). The mapping between the two 
oordinate

systems works well everywhere ex
ept at the north pole itself. This freedom to des
ribe a

given geometri
al 
on�guration in terms of di�erent possible 
hoi
es of 
oordinate system

is one of the 
ornerstones of Einstein's general theory of relativity, whi
h is the theory

of gravitation. A 
ru
ial ingredient in the theory is that our des
ription of physi
s, and

physi
al laws, should be formulated in su
h a way that no preferred 
hoi
e of 
oordinate

system need be made.

The se
ond idea that our investigation of the stereographi
 proje
tion has introdu
ed

is that there are also genuinely di�erent geometries that 
an be obje
tively distinguished

from one another. Again, though, the 
hoi
e of 
oordinates is not important. In parti
ular,

we saw that the 
at metri
 on the plane is geometri
ally quite di�erent from the 
urved

metri
 on the 2-sphere. We wrote the 
at metri
 ds

2

in two equivalent ways, using either

Cartesian or spheri
al polar 
oordinates:

ds

2

= dx

2

+ dy

2

=

1

4


ose


4
1

2

� (d�

2

+ sin

2

� d�

2

) : (5.92)

By the same token, we 
an write the metri
 on the sphere in di�erent ways too. On the

one hand we have

d~s

2

=

1

4

(d�

2

+ sin

2

� d�

2

) ; (5.93)

on the sphere of radius

1

2

. From (5.89) we 
an also therefore write this in terms of the
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omplex 
oordinate z, related to (�; �) by (5.86), as

d~s

2

= sin

4

1

2

� jdzj

2

; (5.94)

whi
h, after expressing � in terms of z, be
omes

d~s

2

=

jdzj

2

(1 + jzj

2

)

2

: (5.95)

Noti
e that the metri
 d~s

2

on the sphere, and the metri
 ds

2

on the plane, are related

to one another by a multipli
ative fa
tor:

d~s

2

= 


2

ds

2

: (5.96)

Of 
ourse the fa
tor is 
oordinate-dependent, namely


 =

1

1 + jzj

2

: (5.97)

This means that the 
onformal stru
ture is preserved; the shapes of in�nitesimal surfa
es,

and the angles between lines in in�nitesimal �gures, are the same whether they are measured

in the 
at metri
 or the sphere metri
.

6 Some Introdu
tory Geometry and Group Theory

6.1 Some Properties of the 2-Sphere

We shall begin by looking in more detail at at some of the properties of the 2-sphere. It is

going to be
ome tedious at this stage if we 
ontinue to work with a sphere of radius

1

2

; it

was the \natural" radius in the 
ontext of the stereographi
 proje
tion, but not otherwise.

So 
onsider from now on a sphere of radius 1, whi
h is 
ommmonly 
alled the unit sphere.

Introdu
e three 
oordinates (X;Y;Z) in Eu
lidean 3-spa
e. We sometimes denote this spa
e

by IR

3

(indi
ating three real dire
tions). The unit sphere 
an then be 
onsidered to be the

surfa
e

X

2

+ Y

2

+ Z

2

= 1 (6.1)

in IR

3

.

At times it will be 
onvenient to use an index notation for the 
oordinates, and so we

shall de�ne X

a

to mean (X

1

;X

2

;X

3

) = (X;Y;Z). Note that we put the index \upstairs"

on the 
oordinates; that is a well-established 
onvention. It does mean, however, that one

has to be 
areful somtimes in order to avoid 
onfusion between, for example, X

2

meaning Y

(as it does here), and the total di�erent notion of X

2

meaning X times X. Often, to avoid
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the 
onfusion, it is 
onvenient to write expli
it numeri
al indi
es on 
oordinates downstairs,

so that we would use X

a

for the generi
 
oordinates, but (X

1

;X

2

;X

3

) for the i = 1, 2 and

3 values. This is not a perfe
t resolution either, and one just has to be adaptable.

Let us see how to make pre
ise our observation of a while ago that the 2-sphere is very

symmetri
al, with ea
h point on the surfa
e looking like ea
h other point. It 
an be seen

very 
learly in the de�ning equation (6.1), in fa
t, if we write it as

X

a

X

a

= 1 : (6.2)

Alternatively, in a ve
tor notation, we 
ould de�ne the 
olumn ve
tor X as

X =

0

B

B

�

X

Y

Z

1

C

C

A

; (6.3)

so that (6.2) be
omes

X

T

X = 1 ; (6.4)

where X

T

denotes the transpose of X.

It is now evident that if we a
t on the 
olumn ve
tor X with any 3�3 orthogonal matrix

M , to give a new 
olumn ve
tor X

0

�M X, then the 
ondition (6.4) will be left unaltered:

X

0

T

X

0

= X

T

M

T

M X = X

T

X = 1 ; (6.5)

sin
e M

T

M = 1l. Expressed in index notation, the equivalent statement is that X

0

a

�

M

ab

X

b

, and the orthogonality 
ondition on the matrix is M

ab

M

a


= Æ

b


, so that

X

0

a

X

0

a

=M

ab

X

b

M

a


X




= Æ

b


X

b

X




= X

b

X

b

= 1 : (6.6)

Of 
ourse M

ab

here denotes the element at row a and 
olumn b in the matrix M . Sin
e M

is 3� 3 and orthogonal, it is referred to as an O(3) matrix. An orthogonal n� n matrix is


orrespondingly 
alled an O(n) matrix.

Thus we have the statement that if one a
ts the on the de�ning equation (6.2) with any

O(3) matrix, the equation is left unaltered. This means that O(3) is the symmetry group

of the 2-sphere. It may be helpful to look at what in�nitesimal O(3) transformations do to

the sphere. Suppose M is orthogonal, and in�nitesimally 
lose to the identity matrix:

M = 1l +A ; (6.7)

where the magnitudes of the 
omponents of A are in�nitesimal. Then the orthogonality


ondition M

T

M = 1l be
omes

(1l +A

T

)(1l +A) = 1l ; (6.8)
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and sin
e A is in�nitesimal we 
an negle
t the A

T

A term in 
omparison to the terms linear

in A, giving A+A

T

= 0, so

A

T

= �A : (6.9)

So the 
ondition for M de�ned in (6.7) to be orthogonal when A is in�nitesimal is that A

should be antisymmetri
.

This means that we 
an easily 
al
ulate the in�nitesimal displa
ements ÆX

a

� X

0

a

�X

a

that result from a
ting with M = 1l +A:

ÆX

a

=M

ab

X

b

�X

a

= (Æ

ab

+A

ab

)X

b

�X

a

= A

ab

X

b

: (6.10)

The number of independent 
omponents in a 3�3 antisymmetri
 matrix is 
learly

1

2

�3�2,

and so we 
an say that the symmetry group O(3) of the 2-sphere has 3 parameters.

We 
an see dire
tly that the de�ning surfa
e (6.2) is invariant under the in�nitesimal

transformations, sin
e we shall then have

Æ(X

a

X

a

) = 2X

a

ÆX

a

= 2X

a

A

ab

X

b

= 0 ; (6.11)

where the last step follows from the fa
t that A

ab

is antisymmetri
 in ab, while X

a

X

b

is

symmetri
 in ab.

Note that not only is the surfa
e (6.2) invariant under the O(3) transformations, but

so also is the metri
 on the 2-sphere. How do we write the metri
 in terms of the X

a


oordinates? After all, there are three of them, but the 2-sphere needs only two 
oordinates.

The point is that when we say the metri
 on the 2-sphere, we are having in mind the metri


that we would indu
e by taking the ordinary Eu
lidean metri
 in IR

3

, and then imposing

the rule that all points have to be restri
ted to lie on the surfa
e de�ned by (6.2). Thus the

2-sphere metri
 
an be written as

ds

2

= dX

a

dX

a

; (6.12)

subje
t to the 
onstraint (6.2). Clearly (6.12) is also invariant under the O(3) rotations that

we have been 
onsidering. Bearing in mind that M is a 
onstant matrix, the 
al
ulations

that showed the invarian
e of (6.1) will work in exa
tly the same way to show the invarian
e

of (6.12). Sin
e the metri
 (6.12) and the 
onstraint (6.2) are both invariant under O(3), it

follows that the indu
ed metri
 on the surfa
e of the sphere is invariant under O(3) also.

To make 
onta
t with some earlier dis
ussion, let us 
on�rm that (6.12) together with

(6.2) does indeed give us the metri
 that we expe
t to see on the 2-sphere. We 
an do this
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most easily by solving the 
onstraint equation (6.2) expli
itly, whi
h 
an be done by making

the familiar de�nitions

X = sin � 
os� ; Y = sin � sin� ; Z = 
os � : (6.13)

These are nothing but the usual de�nitions relating spheri
al polar 
oordinates to Cartesian


oordinates, but with the r 
oordinate set equal to 1 sin
e we have r

2

� X

2

+Y

2

+Z

2

= 1.

Substituting (6.13) into (6.12), we get

ds

2

= d�

2

+ sin

2

� d�

2

: (6.14)

This is exa
tly what we should get, for the metri
 on a unit 2-sphere.

We 
an also now look at what the O(3) symmetry transformations do in terms of the


oordinates (�; �) on the 2-sphere. This is most easily done at the in�nitesimal level, so we

just take (6.10), and put it together with (6.13). First, 
onsider ÆZ:

ÆZ = A

31

X +A

32

Y : (6.15)

But ÆZ = Æ(
os �) = � sin � Æ�, so we get

� sin � Æ� = �A

13

sin � 
os��A

23

sin � sin� ; (6.16)

where we have also used the antisymmetry to re-express A

31

as �A

13

, and A

32

as �A

23

.

Thus we have

Æ� = A

13


os�+A

23

sin� : (6.17)

Now, we 
an look at ÆX, whi
h gives

� sin � sin� Æ�+ 
os � 
os� Æ� = A

12

sin � sin�+A

13


os � : (6.18)

But we already know how � transforms, from (6.17), so we 
an plug this ba
k in, and hen
e

read o� the transformation for �. Colle
ting the results together, we then have:

Æ� = A

13


os�+A

23

sin� ;

Æ� = �A

12

�A

13


ot � sin�+A

23


ot � 
os� : (6.19)

This gives us the in�nitesimal transformations of the � and � 
oordinates on the 2-sphere,


orresponding to the a
tion of the in�nitesimal O(3) transformation with parameters A

12

,

A

13

and A

23

.

Noti
e that the transformation 
orresponding to the parameter A

12

is parti
ularly sim-

ple; it is just

Æ� = 0 ; Æ� = �A

12

: (6.20)
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This means that under this symmetry transformation the � 
oordinate is held �xed, and the

� 
oordinate is shifted by an in�nitesimal 
onstant. We 
an easily visualise this symmetry

transformation; we just take a little walk along a line of latitude on the sphere. Obviously

this is a symmetry. This 
an also be seen by looking at the metri
 (6.14) on the sphere;

sending � �! �+
onstant leaves the metri
 unaltered. The other two symmetry trans-

formations, asso
iated with the parameters A

13

and A

23

are a little harder to visualise, in

terms of the � and � 
oordinates on the 2-sphere, but they again 
orrespond to translations

on the surfa
e, whi
h again leave the metri
 un
hanged.

6.2 Ve
tor Fields

In fa
t the in�nitesimal transformations of the 
oordinates � and � that we have just seen

allow us to introdu
e the 
on
ept of a ve
tor �eld. We should begin this dis
ussion by

forgetting 
ertain things about ve
tors that we learned in kindergarten. There, the 
on
ept

of a ve
tor was introdu
ed through the notion of the position ve
tor, whi
h was an arrow

joining a point A to some other point B in three-dimensional Eu
lidean spa
e. This is �ne

if one is only going to talk about Eu
lidean spa
e in Cartesian 
oordinates, but it is not a

valid way des
ribing a ve
tor in general. If the spa
e is 
urved, su
h as the sphere, or even

if it is 
at but des
ribed in non-
artesian 
oordinates, su
h as Eu
lidean 3-spa
e des
ribed

in spheri
al polar 
oordinates, the notion of a ve
tor as a line joining two distant points

A and B breaks down. What we 
an do is take the in�nitesimal limit of this notion, and


onsider the line joining two points A and A+ ÆA. In fa
t what this means is that we think

of the tangent plane at a point in the spa
e, and imagine ve
tors in terms of in�nitesimal

displa
ements in this plane.

To make the thinking a bit more 
on
rete, 
onsider a 2-sphere, su
h as the surfa
e of

the earth. A line drawn between Ney York and Los Angeles is not a ve
tor; for example,

it would not make sense to 
onsider the \sum" of the line from New York to Los Angeles

and the line from Los Angeles to Tokyo, and expe
t it to satisfy any meaningful addition

rules. However, we 
an pla
e a small 
at sheet on the surfa
e of the earth at any desired

point, and draw very short arrows in the plane of the sheet; these are tangent ve
tors at

that parti
ular point on the earth.

The 
on
ept of a ve
tor as an in�nitesimal displa
ement makes it sound very like the

derivative operator, and indeed this is exa
tly what a ve
tor is. Suppose we draw a path

on the surfa
e of the earth, parameterised by some quantity � that in
reases monotoni
ally

as we move along the path. The 
oordinates of a point P on the path will then be given by
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(�(�); �(�)), and the tangent ve
tor at that point is

V =

�

��

: (6.21)

Generally, if we are in a spa
e with 
oordinates x

i

, and there is a path x

i

(�) parameterised

by �, then the tangent ve
tor at the point P is again given by (6.21). Furthermore, using

the 
hain rule for di�erentiation, we shall have

V =

�

��

=

dx

i

(�)

d�

�

�x

i

: (6.22)

The derivatives �

i

� �=�x

i

, whi
h in fa
t are what we normally 
all the gradient operator,

are a
ting here as a set of basis ve
tors for the tangent spa
e, and we may write the ve
tor

V as

V = V

i

�

i

; (6.23)

where V

i

are the 
omponents of the ve
tor V with respe
t to the basis �

i

;

V

i

=

dx

i

(�)

d�

: (6.24)

(Of 
ourse here we are using the Einstein summation 
onvention that any dummy index,

whi
h o

urs twi
e in a term, is understood to be summed over the range of the index.)

Noti
e that there is another signi�
ant 
hange in viewpoint here in 
omparison to the

\kindergarten" notion of a ve
tor. We make a 
lear distin
tion betwen the ve
tor itself,

whi
h is the geometri
al obje
t V de�ned quite independently of any 
oordinate system by

(6.21), and its 
omponents V

i

, whi
h are 
oordinate-dependent.

22

Indeed, if we imagine

now 
hanging to a di�erent set of 
oordinates x

0

i

in the spa
e, related to the original ones

by x

0

i

= x

0

i

(x

j

), then we 
an use the 
hain rule to 
onvert between the two bases:

V = V

j

�

�x

j

= V

j

�x

0

i

�x

j

�

�x

0

i

� V

0

i

�

�x

0

i

: (6.25)

In the last step we are, by de�nition, taking V

0

i

to be the 
omponents of the ve
tor V with

respe
t to the primed 
oordinate basis. Thus we have the rule

V

0

i

=

�x

0

i

�x

j

V

j

; (6.26)

whi
h tells us how to transform the 
omponents of the ve
tor V between the primed and

the unprimed 
oordinate system. This is the fundamental de�ning rule for how a ve
tor

22

However, it sometimes be
omes 
umbersome to use the longer form of words \the ve
tor whose 
om-

ponents are V

i

," and so we shall sometimes slip into the way of speaking of \the ve
tor V

i

." One should

remember, however, that this is a slightly sloppy way of speaking, and the more pre
ise distin
tion between

the ve
tor and its 
omponents should always be borne in mind.
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must transform under arbitrary 
oordinate transformations. Su
h transformations are 
alled

General Coordinate Transformations.

Let us return to the point alluded to previously, about the ve
tor as a linear di�erential

operator. We have indeed been writing ve
tors as derivative operators, so let's see why that

is very natural. Suppose we have a s
alar �eld  (x) de�ned in the spa
e. (We suppress the

i index on the 
oordinates x

i

in the argument here; think of the x in  (x) as representing

the full set of 
oordinates,  (x

1

; x

2

; : : : ; x

n

).) Now, if we wish to evaluate  at a nearby

point x

i

+ �

i

, where �

i

is in�nitesimal, we 
an just make a Taylor expansion:

 (x+ �) =  (x) + �

i

�

i

 (x) + � � � ; (6.27)

and we 
an negle
t the higher terms sin
e � is assumed to be in�nitesimal. Thus we see

that the 
hange in  is given by

Æ (x) �  (x+ �)�  (x) = �

i

�

i

 (x) ; (6.28)

and that the operator that is implementing the translation of  (x) is exa
tly what we earlier


alled a ve
tor �eld,

�

i

�

i

; (6.29)

where

Æx

i

� (x

i

+ �

i

)� x

i

= �

i

: (6.30)

Having introdu
ed the 
on
ept of the ve
tor �eld, let's go ba
k to our dis
ussion of

the symmetries of the 2-sphere. Re
all that we had in�nitesimal translations of the (�; �)


oordinates, given by

Æ� = A

13


os�+A

23

sin� ;

Æ� = �A

12

�A

13


ot � sin�+A

23


ot � 
os� ; (6.31)

where A

12

, A

13

and A

23

are in�nitesimal 
onstants. Thinking of � and � as the two 
oordi-

nates x

i

in the 2-sphere, we see that we have pre
isely the situation we were just looking at,

with in�nitesimal 
omponents �

i

of ve
tor �elds that 
an be read o� by 
omparing (6.30)

with (6.31). Let us give the names K

12

, K

13

and K

23

to the three ve
tor �elds asso
iated

with the transformation parameters A

12

, A

13

and A

23

respe
tively. Thus we have

K

12

=

�

��

;

K

13

= � 
os�

�

��

+ 
ot � sin�

�

��

; (6.32)

K

23

= � sin�

�

��

� 
ot � 
os�

�

��

:
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(We have introdu
ed an overall fa
tor of (�1) in ea
h 
ase, just for 
onvenien
e.)

It will be re
alled that the three ve
tor �elds that we have obtained in (6.32) have a

very spe
ial property, namely that they desribe transalations on the surfa
e of the sphere

whi
h leave the metri
 invariant. They are in fa
t the generators of the symmetry group of

the 2-sphere. Re
all that the symmetry group was O(3). A
tually, at the in�nitesimal level

whi
h we are looking at now, we 
an't tell the di�eren
e between O(3) and SO(3), where

the \S" stands for spe
ial, and indi
ates that the orthogonal O(3) matri
es are furthermore

restri
ted to have determinant equal to +1. The orthogonality 
onditionM

T

M = 1l implies

that

(detM

T

) (detM) = 1 ; (6.33)

and hen
e (detM)

2

= 1 and so detM = �1, so the additional imposition of the detM = +1


ondition amounts to a dis
rete 
hoi
e that restri
ts the matri
es M to des
ribing pure

rotations, without re
e
tions. So in the 
ontext of in�nitesimal transformations, it is more

appropriate to think of the symmetry group of the sphere as being SO(3).

The set of three ve
tors (6.32) des
ribe the SO(3) rotational symmetries of the 2-sphere.

On any spa
e, the ve
tors that des
ribe the 
ontinous symmetries of the spa
e are 
alled

Killing ve
tors

23

. The SO(3) Killing ve
tors (6.32) may seem rather familiar; they are

exa
tly what one meets in quantum me
hani
s when studying angular momentum. The

angular momentum operators are pre
isely the generators of rotational translations in Eu-


lidean 3-spa
e, and so not surprisingly, they are synonymous with ve
tor �elds. By the

same token the ordinary linear momentum operators P are the generators of linear trans-

lations in Eu
lidean 3-spa
e, and so not surprisingly they are asso
iated with the ve
tor

�elds

�

�x

;

�

�y

;

�

�z

: (6.34)

We shall 
lose this dis
ussion of ve
tor �elds, and Killing ve
tors, by looking a little

more 
losely at the sense in whi
h the SO(3) Killing ve
tors in (6.32) leave the metri


ds

2

= d�

2

+ sin

2

� d� (6.35)

on the 2-sphere invariant. To do this, we 
an look �rst at the more general situation of a

metri
 on some general n-dimensional spa
e. We 
an write this is

ds

2

= g

ij

dx

i

dx

j

; (6.36)

23

Named after nothing more sinister than a mathemati
ian 
alled Killing!
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where g

ij

are the 
omponents of a 2-index symmetri
 tensor, 
alled the metri
 tensor. In

general it depends on the 
oordinates x

i

. Thus in the 
ase of the 2-sphere we have x

1

= �,

x

2

= �, and

g

ij

=

 

1 0

0 sin

2

�

!

: (6.37)

Noti
e that the way we are writing the metri
 in (6.36) is somewhat reminis
ent of

the way we wrote the ve
tor �eld V in (6.23). In that 
ase, the geometri
al quantity V

was expanded in a 
oordinate basis, in terms of 
omponents V

i

multiplying the partial

derivatives �=�x

i

. Here, we are expanding the geometri
al quantity ds

2

in terms of its


omponents g

ij

whi
h multiply the 
oordinate di�erentials dx

i

. The key di�eren
e here is

that the indi
es on the metri
 tensor 
omponents g

ij

live downstairs, whereas the index on

the 
omponents of the ve
tor �eld live upstairs. These are two quite distin
t types of obje
t

that one en
ounters in geometry. We may 
onsider a simpler example of a 1-index obje
t,

say U

i

, with

U = U

i

dx

i

: (6.38)

One 
an again work out how the 
omponents U

i

transform under a 
hange of 
oordinate

basis by using the 
hain rule:

U = U

j

dx

j

= U

j

�x

j

�x

0

i

dx

0

i

� U

0

i

dx

0

i

; (6.39)

from whi
h we read o�

U

0

i

=

�x

j

�x

0

i

U

j

: (6.40)

This is the \inverse" of the transformation rule for the ve
tor �eld that we derived in

equation (6.26). In a similar fashion, from the intrinsi
 
oordinate independen
e of the

geometri
al quantity ds

2

itself, we 
an dedu
e that the 
omponents g

ij

of the metri
 tensor

transform as

g

0

ij

=

�x

k

�x

0

i

�x

`

�x

0

j

g

k`

; (6.41)

under a 
hange of 
oordinate system.

We have seen how the 
omponents of ve
tor �elds, su
h as V

i

and U

i

, transform under

general 
oordinate transformations. (See (6.26) and (6.40).) More generally, we 
an 
onsider

tensors whose 
omponents 
omprise p upstairs indi
es, and q downstairs indi
es:

T

i

1

���i

p

j

1

���j

q

: (6.42)

These quantities will transform analogously under general 
oordinate transformations, with

one transformation fa
tor like in (6.26) for ea
h upstairs index, and one fa
tor like in (6.40)
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for ea
h downstairs index:

T

0

i

1

���i

p

j

1

���j

q

=

�x

0

i

1

�x

k

1

� � �

�x

0

i

p

�x

k

q

�x

`

1

�x

0

j

1

� � �

�x

`

q

�x

0

j

q

T

k

1

���k

p

`

1

���`

q

: (6.43)

In fa
t we already en
ountered one su
h example, namely the metri
 tensor, with 
ompo-

nents g

ij

, in (6.41). Tensors T

i

1

���i

p

j

1

���j

q

, whi
h by de�nition transform a

ording to (6.43),

are said to transform 
ovariantly under general 
oordinate transformations. Similarly, a

tensor-valued equation where all the terms transform a

ording to this rule are said to be


ovariant equations. This means that the rule for transforming them from the unrpimed


oordinate system to the primed 
oordinate system is simply to put primes on everything.

What 
ould be easier!

Noti
e that if we make a 
ontra
tion of indi
es in some tensor expression, then the

resulting quantity now has the transformation rule that we should expe
t for an obje
t

with the redu
ed number of free indi
es. For example, if we take the ve
tors V

i

and U

i

, an

make a 
ontra
tion, we 
an 
onstru
t the s
alar quantity

� = V

i

U

i

: (6.44)

We 
all this a s
alar be
ause it requires no 
oordinate transformation matrix at all (it


ouldn't, sin
e there are no indi
es for the matrix to hook onto!). Thus under general


oordinate transformations we �nd

�

0

� V

0

i

U

0

i

=

�x

0

i

�x

k

V

k

�x

`

�x

0

i

U

`

=

�x

`

�x

k

V

k

U

`

= Æ

`

k

V

k

U

`

= V

k

U

k

= � : (6.45)

More generally, if we 
ontra
t n of the upper indi
es in T

i

1

���i

p

j

1

���j

q

with n of the lower

indi
es, we shall end up with an obje
t with (p � n) free upper indi
es, and (q � n) free

lower indi
es, whi
h transforms exa
tly as a tensor with those numbers of upper and lower

indi
es should.

To 
lose this se
tion, let us go ba
k to the symmetries of the 2-sphere, or more generally,

the symmetries of any metri
.

24

If an in�nitesimal translation Æx

i

= �

i

of the 
oordinates

leaves the metri
 invariant then we shall have ds

2

(x+ Æx) = ds

2

(x), and so

g

ij

(x+ Æx) d(x

i

+ �

i

) d(x

j

+ �

j

) = g

ij

dx

i

dx

j

; (6.46)

where we need only keep quantities up to �rst order in the in�nitesimal �

i

. Sin
e from

the 
hain rule we have d�

i

= (�

k

�

i

) dx

k

, we get, after appropriate 
hanges of the names of

dummy summation indi
es,

g

ij

dx

i

dx

j

+

�

�

k

�

k

g

ij

+ g

kj

�

i

�

k

+ g

ik

�

j

�

k

�

dx

i

dx

j

= g

ij

dx

i

dx

j

; (6.47)

24

Not all metri
 have symmetries, so this dis
ussion applies to su
h symmetries as they may have.
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and so the 
ondition for �

i

to be the 
omponents of a Killing ve
tor is

�

k

�

k

g

ij

+ g

kj

�

i

�

k

+ g

ik

�

j

�

k

= 0 : (6.48)

A ve
tor with 
omponents �

i

that satis�es this equation is what is 
alled a Killing ve
tor,

and the equation is Killing's equation.

It is quite easy to verify that the three Killing ve
tors (6.32) that we obtained earlier

on the 2-sphere do indeed satisfy Killing's equation. The easiest one to 
he
k is K

12

, sin
e

it 
orresponds simply to �

1

= 0, �

2

= 1. Sin
e these 
omponents are 
onstants the last two

terms in (6.48) 
an immediately be seen to be zero, while in the �rst term the dire
tional

derivative �

k

�

k

is 
learly just �=��, and so this gives zero sin
e none of the 
omponents

of the 2-sphere metri
 (6.37) depends on �. Che
king that the other two Killing ve
tors in

equation (6.32) satisfy (6.48) takes a little more work, and in fa
t one now gets a non-trivial


an
ellation between 
ontributions from the various terms. Of 
ourse there is, logi
ally-

speaking, really no need to verify that the ve
tors in (6.32) do indeed satisfy (6.48), sin
e

they were 
onstru
ted pre
isely to have the property of generating symmetries of the metri
.

But it is sometimes reassuring to 
he
k things by di�erent methods, to reaÆrm that there

is indeed a 
onsistent unity in the universe!

6.3 The Metri
 Tensor and its Inverse

The metri
 tensor plays many important rôles in geometry. One of these is that it 
an

be used to lower the index on the 
omponents of a ve
tor V

i

, to give a quantity whose


omponents g

ij

V

j

transform just like the U

i

we dis
ussed above. To 
he
k this, we just

evaluate the quantity g

ij

V

j

in the primed 
oordinate system, whi
h we 
an easily do sin
e

we know exa
tly how g

ij

and V

j

transform (see (6.41)):

g

0

ij

V

0

j

=

�x

k

�x

0

i

�x

`

�x

0

j

g

k`

�x

0

j

�x

m

V

m

: (6.49)

But by the 
hain rule, we have

�x

`

�x

0

j

�x

0

j

�x

m

=

�x

`

�x

m

; (6.50)

and then by de�nition this gives us Æ

`

m

, so we �nd:

g

0

ij

V

0

j

=

�x

k

�x

0

i

g

km

V

m

: (6.51)

This is exa
tly the way that a ve
tor with downstairs 
omponents, like U

i

in (6.40) should

transform. In fa
t we 
an be e
onomi
al with our use of symbols, and de�ne

V

i

� g

ij

V

j

: (6.52)
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At the moment, the use of the metri
 to lower indi
es looks a bit like a \one-way street,"

sin
e having got the index downstairs, we don't yet know how to get it ba
k upstairs again.

But this is easily remedied; we just need the inverse metri
. This is literally what is sounds

like; we view g

ij

as a matrix, and we de�ne the inverse of the metri
 to be the matrix

inverse. We may write its 
omponents as g

ij

. Sin
e we should have g

�1

g = 1l, this means

we should have

g

ij

g

jk

= Æ

i

k

: (6.53)

This 
an be taken as the de�nition of the inverse metri
. It is easy to see, by manipulations

pre
isely analogous to those we performed above, that in order for (6.53) to be true in all


oordinate frames, g

ij

should indeed transform like the 
omponents of a tensor with two

upstairs indi
es (see (6.43)). It is then easily veri�ed that if we take V

i

de�ned in (6.52),

and now raise the index using g

ij

, we get ba
k to where we started:

V

i

= g

ij

V

j

: (6.54)

More generally, we 
an use g

ij

to raise indi
es on any tensor.

Noti
e that we 
an 
onstru
t a s
alar quantity from a ve
tor V

i

, by using the metri


tensor:

V

i

V

j

g

ij

: (6.55)

This is what we 
an 
all the (magnitude)

2

of the ve
tor. It is equivalent to the \dot produ
t"

of a ve
tor with itself in traditional ve
tor analysis. In the general 
ontext we are dis
ussing

here one sees that the metri
 tensor g

ij

is essential for being able to 
onstru
t the s
alar

from V

i

. Of 
ourse this was e�e
tively true in the 
ontext of Cartesian ve
tor analysis also,

but there the metri
 tensor was just Æ

ij

, and one hardly noti
ed that one was using it. More

generally, we 
an use the metri
 to allow us to 
onstru
t a s
alar from any two ve
tors:

V

i

W

j

g

ij

: (6.56)

6.4 Covariant Di�erentiation

A familiar 
on
ept in Cartesian tensor analysis is that the partial derivatives �

i

� �=�x

i


an a
t on a tensor �eld to give another tensor �eld.

25

However, a 
ru
ial point in Cartesian

tensor analysis is that we do not 
onsider general 
oordinate transformations; rather, we

restri
t ourselves only to 
onstant transformation matri
es M

ij

whi
h, furthermore, are

25

We now use \tensor" as a generi
 term, whi
h 
an in
lude the parti
ular 
ases of a s
alar, and a ve
tor.
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orthogonal:

x

0

i

=M

ij

x

j

; M

ij

M

ik

= Æ

jk

: (6.57)

In fa
t we en
ountered pre
isely su
h types of transformation earlier on, when 
onsidering

the O(3) rotational symmetry of the 2-sphere. This was be
ause we were embedding it in

3-dimensional Eu
lidean spa
e with Cartesian 
oordinates. For Cartesian Tensors, there is

no need to distinguish between upstairs and downstairs indi
es, sin
e the asso
iated metri


tensor is just the Krone
ker delta, g

ij

= Æ

ij

, whi
h is its own inverse. Note that from (6.57)

we have

�x

0

i

�x

j

=M

ij

= 
onstant : (6.58)

In Cartesian tensor analysis a tensor is any quantity whose 
omponents transform with

the appropriate fa
tors of M

ij

, as, for example,

V

0

i

=M

ij

V

j

;

�

�x

0

i

=M

ij

�

�x

j

: (6.59)

(The se
ond equation here shows that the gradient operator �=�x

i

is a ve
tor.)

Now, from the above it is easy to see that if V

i

is a Cartesian ve
tor �eld, then the

quantity

T

i

j

�

�V

i

�x

j

(6.60)

is a Cartesian tensor. We prove this by the standard te
hnique of showing that it transforms

properly for a Cartesian tensor:

T

0

i

j

�

�V

0

i

�x

0

j

=M

j`

�(M

ik

V

k

)

�x

`

=M

j`

M

ik

�V

k

�x

`

=M

j`

M

ik

T

k

`

: (6.61)

The 
ru
ial step in this proof was the one where the transformation matrixM

ik

was brought

outside the di�erentiation, be
ause it is a 
onstant matrix. This is the step where things

are going to be di�erent when we 
onsider the 
ase of tensors under general 
oordinate

transformations.

The above was a review of what happens for Cartesian tensors. Now, let's get ba
k to the

mu
h more general 
ase we are really interested in, of quantities that transform as tensors

under the 
ompletely arbitrary general 
oordinate transformations, with x

0

i

= x

0

i

(x

j

). First,

let's see what goes wrong with a naive attempt, and then we'll see how to �x it.

Suppose V

i

is a ve
tor under general 
oordinate transformations (so it transforms as in

(6.26)). Let us 
onsider the quantity

W

i

j

�

�V

i

�x

j

: (6.62)
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Is this a tensor? To test it, we 
al
ulate W

0

i

j

, to see if it is the proper tensorial transform

of W

i

j

. We get:

W

0

i

j

�

�V

0

i

�x

0

j

=

�x

`

�x

0

j

�

�x

`

�

�x

0

i

�x

k

V

k

�

=

�x

`

�x

0

j

�x

0

i

�x

k

�V

k

�x

`

+

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

k

V

k

;

=

�x

`

�x

0

j

�x

0

i

�x

k

W

k

`

+

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

k

V

k

: (6.63)

So the answer is no; the �rst term by itself would have been �ne, but the se
ond term

here has spoiled the general 
oordinate transformation behaviour. Of 
ourse there is no

mystery behind what we are seeing here; the se
ond term has arisen be
ause the derivative

operator has not only landed on the ve
tor V

k

, giving us what we want, but it has also

landed on the transformation matrix �x

0

i

=�x

k

. This problem was avoided in the 
ase of

the Cartesian tensors, be
ause we only required that they transform ni
ely under 
onstant

transformations (6.58).

The 
on
ept of di�erentiation is too important for us to give it up in this 
ontext.

A

ordingly, what we have to do now is to generalise the notion of a derivative, so that it

does have the property of yielding tensors when we a
t with it on tensors. What we need

to de�ne now is the Covariant Derivative.

To abbreviate the writing, let us start to make use of the notation we brie
y introdu
ed

earlier, where the usual partial derivatives are written as �

i

:

�

i

�

�

�x

i

: (6.64)

Now, we shall de�ne the 
ovariant derivative r

j

of a ve
tor V

i

as follows:

r

j

V

i

� �

j

V

i

+ �

i

jk

V

k

; (6.65)

where the quantities �

i

jk

satisfy the symmetry 
ondition

�

i

jk

= �

i

kj

: (6.66)

They are de�ned to have pre
isely the 
orre
t transformation properties under general


oordinate transformations that ensure that the quantity

T

i

j

� r

j

V

i

(6.67)

does transform like a tensor under general 
oordinate transformations. The 
ru
ial point

here is that �

i

jk

itself is not a tensor. It is 
alled a Conne
tion, in fa
t.
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First, let us see how we would like �

i

jk

to transform, and then, we shall show how to


onstru
t su
h an obje
t. By de�nition, we want it to be su
h that

�x

0

i

�x

k

�x

`

�x

0

j

r

`

V

k

= r

0

j

V

0

i

� �

0

j

V

0

i

+ �

0

i

jk

V

0

k

: (6.68)

Wrtiting out the two sides here, we get the requirement that

�x

0

i

�x

k

�x

`

�x

0

j

�

�

`

V

k

+ �

k

`m

V

m

�

=

�x

`

�x

0

j

�

`

�

�x

0

i

�x

m

V

m

�

+ �

0

i

jk

�x

0

k

�x

m

V

m

=

�x

`

�x

0

j

�x

0

i

�x

m

�

`

V

m

+

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

m

V

m

+�

0

i

jk

�x

0

k

�x

m

V

m

: (6.69)

The required equality of the left-hand side of the top line and the right-hand side of the

bottom line for all ve
tors V

m

allows us to dedu
e that we must have

�x

0

i

�x

m

�x

`

�x

0

j

�

k

`m

=

�x

0

k

�x

m

�

0

i

jk

+

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

m

: (6.70)

Multiplying this by �x

m

=�x

0

n

then gives us the result that

�

0

i

jn

=

�x

0

i

�x

k

�x

`

�x

0

j

�x

m

�x

0

n

�

k

`m

�

�x

m

�x

0

n

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

m

: (6.71)

This dog's breakfast is the required transformation rule for �

i

jk

. Noti
e that the �rst term

on the right-hand side is the \ordinary" type of tensor transformation rule. The presen
e

of the se
ond term shows that �

i

jk

is not in fa
t a tensor, be
ause it doesn't transform like

one.

The above 
al
ulation is quite messy, but hopefully the essential point 
omes a
ross


learly; the purpose of the ugly se
ond term in the transformation rule for �

i

jk

is pre
isely

to remove the ugly extra term that we en
ountered whi
h prevented �

j

V

i

from being a

tensor.

Lu
kily, it is quite easy to provide an expli
it 
onstru
tion for a suitable quantity �

i

jk

that has the right transformation properties. First, we need to note that we should like

to de�ne a 
ovariant derivative for any tensor, and that it should satisfy Leibnitz's rule

for the di�erentiation of produ
ts. Now the need for the 
ovariant derivative arise be
ause

the transformation of the 
omponents of a ve
tor or a tensor from one 
oordinate frame

to another involves non-
onstant transformation matri
es of the form �x

0

i

=�x

j

. Therefore

on a s
alar, whi
h doesn't have any indi
es, the 
ovariant derivative must be just the same

thing as the usual partial derivative. Combining this fa
t with the Leibnitz rule, we 
an

work out what the 
ovariant derivative of a ve
tor with a downstairs index must be:

�

j

(V

i

U

i

) = (�

j

V

i

)U

i

+ V

i

�

j

U

i

; usual Leibnitz rule ;
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= r

j

(V

i

U

i

) = (r

j

V

i

)U

i

+ V

i

r

j

U

i

; 
ovariant Leibnitz rule ; (6.72)

= (�

j

V

i

+ �

i

jk

V

k

)U

i

+ V

i

r

j

U

i

; from de�nition of r

j

V

i

:

Comparing the top line with the bottom line, the two �

j

V

i

terms 
an
el, and we are left

with

V

i

�

j

U

i

= V

i

r

j

U

i

+ �

i

jk

V

k

U

i

: (6.73)

Changing the labelling of dummy indi
es to

V

i

�

j

U

i

= V

i

r

j

U

i

+ �

k

ji

V

i

U

k

; (6.74)

we see that if this is to be true for all possible ve
tors V

i

then we must have

r

j

U

i

= �

j

U

i

� �

k

ji

U

k

: (6.75)

This gives us what we wanted to know, namely how the 
ovariant derivative a
ts on ve
tors

with downstairs indi
es.

It is straightforward to show, with similar te
hniques to the one we just used, that the


ovariant derivative of an arbitrary tensor with p upstairs indi
es and q downstairs indi
es

is given by using the two rules (6.65) and (6.75) for ea
h index; (6.65) for ea
h upstairs

index, and (6.75) for ea
h downstairs index.

To make 
lear what we mean by this, 
onsider the two-index tensor g

ij

. We use (6.75)

for ea
h downstairs index, giving

r

k

g

ij

= �

k

g

ij

� �

`

ki

g

`j

� �

`

kj

g

i`

: (6.76)

A
tually this parti
ular example, if we take g

ij

to be the metri
 tensor, is exa
tly what we

need next. We 
an now give an expli
it 
ontru
tion of the 
onne
tion �

i

jk

. We do this by

making the additional requirement that we should like the metri
 tensor to be 
ovariantly


onstant, r

k

g

ij

= 0. This is a very useful property to have, sin
e it means, for example,

that if we look at the s
alar produ
t V

i

W

j

g

ij

of two ve
tors, we shall have

r

k

(V

i

W

j

g

ij

) = (r

k

V

i

)W

j

g

ij

+ V

i

(r

k

W

j

) g

ij

: (6.77)

Remembering our rule that we shall in fa
t freely write W

j

g

ij

as W

i

, and so on, it should

be 
lear that life would be
ome a nightmare if the metri
 
ould not be taken freely through

the 
ovariant derivative!

Lu
kily, it turns out that all the things we have been asking for are possible. We 
an

�nd a 
onne
tion �

i

jk

that is symmetri
 in jk, gives us a 
ovariant derivative that satis�es
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the Leibnitz rule, and for whi
h r

k

g

ij

= 0. We 
an �nd it just by juggling around the

indi
es in equation (6.76). To do this, we write out r

k

g

ij

= 0 using (6.76) three times,

with di�erent labellings of the indi
es:

�

k

g

ij

� �

`

ki

g

`j

� �

`

kj

g

i`

= 0 ;

�

i

g

kj

� �

`

ik

g

`j

� �

`

ij

g

k`

= 0 ; (6.78)

�

j

g

ik

� �

`

ji

g

`k

� �

`

jk

g

i`

= 0 ;

Now, add the last two equations and subtra
t the �rst one from this. Using the fa
t that

�

i

jk

is symmetri
 in jk, we therefore get

�

i

g

kj

+ �

j

g

ik

� �

k

g

ij

� 2�

`

ij

g

k`

= 0 : (6.79)

Multiplying this by the inverse metri
 g

km

, we immediately obtain the following expression

for �

i

jk

(after �nally relabelling indi
es for 
onvenien
e):

�

i

jk

=

1

2

g

i`

(�

j

g

`k

+ �

k

g

j`

� �

`

g

jk

) : (6.80)

This is known as the Christo�el Conne
tion, or sometimes the AÆne Conne
tion.

It is a rather simple matter to 
he
k that �

i

jk

de�ned by (6.80) does indeed have the re-

quired transformation property (6.71) under general 
oordinate transformations. A
tually,

there is really no need to 
he
k this point, sin
e it is logi
ally guaranteed from the way we


onstru
ted it that it must have this property. So we leave it as an \exer
ise to the reader,"

to verify by dire
t 
omputation. The prin
iple should be 
lear enough; one simply uses the

expression for �

i

jk

given in (6.80) to 
al
ulate �

0

i

jk

, in terms of �

0

i

and g

0

ij

(whi
h 
an be

expressed in terms of �

i

and g

ij

using their standard tensorial transformation properties).

It then turns out that �

0

i

jk

is related to �

i

jk

by (6.71).

Noti
e that �

i

jk

is zero if the metri
 
omponents g

ij

are all 
onstants. This explains

why we never see the need for �

i

jk

if we only look at Cartesian tensors, for whi
h the metri


is just Æ

ij

. But as soon as we 
onsider any more general situation, where the 
omponents of

the metri
 tensor are fun
tions of the 
oordinates, the Christo�el 
onne
tion will be
ome

non-vanishing. Note that this does not ne
essarily mean that the metri
 has to be one

on a 
urved spa
e (su
h as the 2-sphere that we met earlier); even a 
at metri
 written

in \
urvilinear 
oordinates" will have a non-vanishing Christo�el 
onne
tion. As a simple

example, suppose we take the metri
 on the plane,

ds

2

= dx

2

+ dy

2

; (6.81)
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and write it in polar 
oordinates (r; �) de�ned by

x = r 
os � ; y = r sin � : (6.82)

It is easy to see that (6.81) be
omes

ds

2

= dr

2

+ r

2

d�

2

: (6.83)

If we label the (r; �) 
oordinates as (x

1

; x

2

) then in the metri
 ds

2

= g

ij

dx

i

dx

j

we shall

have

g

ij

=

 

1 0

0 r

2

!

; g

ij

=

 

1 0

0 r

�2

!

: (6.84)

Using (6.80), simple algebra leads to the following results:

�

1

11

= 0 ; �

1

12

= 0 ; �

1

22

= �r ;

�

2

11

= 0 ; �

1

12

=

1

r

; �

2

22

= 0 : (6.85)

Having obtained the Christo�el 
onne
tion for this 
ase, we 
an illustrate how one uses

it by taking the example of the Lapla
ian. In Cartesian 
oordinates we know that the

Lapla
ian of a fun
tion  is just �

i

�

i

 , whi
h is again a s
alar. Obviously, in general, we

should �nd a generalisation of �

i

�

i

 that is again a s
alar. The answer, 
learly, is that the

Lapla
ian of  is

g

ij

r

i

�

j

 ; (6.86)

sin
e by 
onstru
tion, we know that this is a s
alar under general 
oordinate transforma-

tions. Noti
e that we don't need a 
ovariant derivative for the �

j

that a
ts dire
tly on  ,

sin
e that is already 
ovariant. Thus we have in general that the Lapla
ian 
an be written

as

g

ij

�

i

�

j

 � g

ij

�

k

ij

�

k

 : (6.87)

Now, let us apply this to our simple example of the metri
 on the plane written in polar


oordinates. Substituting from (6.84) and (6.85), we get

�

2

1

 +

1

r

2

�

2

2

 +

1

r

�

1

 (6.88)

where the last term is the one 
oming from the 
ontribution of the Christo�el 
onne
tion.

Re-expressing this in a more readable language, we have

�

2

 

�r

2

+

1

r

� 

�r

+

1

r

2

�

2

 

��

2

; (6.89)
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whi
h 
an also be written as

1

r

�

�r

�

r

� 

�r

�

+

1

r

2

�

2

 

��

2

: (6.90)

This was, of 
ourse, an elaborate way to derive a simple and well-known result, but that

was the whole point of the illustrative exer
ise; to show �rst how the new method works in

a simple \toy" example.

In fa
t there is a ni
e way to express the Lapla
ian operator in general that doesn't

require us to grind out all the 
omponents of the Christo�el 
onne
tion. Noti
e from (6.87)

that what we need for the Lapla
ian is the 
ontra
ted set of quantities

g

ij

�

k

ij

; (6.91)

and so from (6.80) we have

g

ij

�

k

ij

=

1

2

g

ij

g

k`

(�

i

g

`j

+ �

j

g

i`

� �

`

g

ij

) ;

= g

ij

g

k`

�

i

g

`j

�

1

2

g

k`

g

ij

�

`

g

ij

;

= �g

ij

g

`j

�

i

g

k`

�

1

2

g

k`

g

ij

�

`

g

ij

;

= �Æ

i

`

�

i

g

k`

�

1

2

g

k`

g

ij

�

`

g

ij

;

= ��

`

g

k`

�

1

2

g

k`

g

ij

�

`

g

ij

: (6.92)

Note that in getting to the third line, we have use that g

k`

g

`j

= Æ

k

j

, whi
h is 
onstant, and

so (�

i

g

k`

) g

`j

+ g

k`

(�

i

g

`j

) = 0.

Now we use one further tri
k, whi
h is to note that as a matrix expression, g

ij

�

`

g

ij

is

just tr(g

�1

�

`

g). But for any symmetri
 matrix we 
an write

26

detg = e

tr log g

; (6.93)

and so

�

`

detg = (det g) tr(g

�1

�

`

g) : (6.94)

Thus we have

1

2

g

ij

�

`

g

ij

=

1

p

g

�

`

p

g ; (6.95)

where we use the symbol g here to mean the determinant of the metri
 g

ij

.

Putting all this together, we have

g

ij

r

i

�

j

 = g

ij

�

i

�

j

 + (�

i

g

ij

) �

j

 + g

ij

1

p

g

(�

i

p

g) �

j

 ; (6.96)

26

Prove by diagonalising the matrix, so that g �! diag(�

1

; �

2

; : : : ; �

n

). This means that detg =

Q

i

�

i

,

while e

tr log g

= e

P

i

log �

i

, and so the result is proven.
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after making some 
onvenient relabellings of dummy indi
es. Now we 
an see that all the

terms on the right-hand side assemble together very ni
ely, giving us the following simple

expression for the Lapla
ian:

g

ij

r

i

�

j

 =

1

p

g

�

i

�

p

g g

ij

�

j

 

�

: (6.97)

This general expression gives us the Lapla
ian in an arbitrary 
oordinate system, for an

arbitrary metri
.

As a �rst 
he
k, let us test it on the previous example of the two-dimensional plane with

the metri
 ds

2

= dr

2

+ r

2

d�

2

in polar 
oordinates. From (6.84) we instantly see that the

determinant of the metri
 is g = r

2

, so plugging into (6.97) we get

g

ij

r

i

�

j

 =

1

r

�

i

�

r g

ij

�

j

 

�

;

=

1

r

�

�r

�

r

� 

�r

�

+

1

r

2

�

2

 

��

2

; (6.98)

in agreement with our previous result.

As a slightly less trivial example, 
onsider Eu
lidean 3-spa
e, written in terms of spher-

i
al polar 
oordinates (r; �; �). These, of 
ourse, are related to the Cartesian 
oordinates

(X;Y;Z) by

X = r sin � 
os� ; Y = r sin � sin� ; Z = 
os � : (6.99)

The metri
, written in terms of the spheri
al polar 
oordinates, is therefore

ds

2

= dr

2

+ r

2

d�

2

+ r

2

sin

2

� d�

2

: (6.100)

The determinant is therefore g = r

4

sin

2

� and so from (6.97) we get that the Lapla
ian is

1

r

2

�

�r

�

r

2

� 

�r

�

+

1

r

2

h

1

sin �

�

��

�

sin �

� 

��

�

+

1

sin

2

�

�

2

 

��

2

i

: (6.101)

6.5 The n-sphere, SO(n+ 1) and Spheri
al Harmoni
s

6.5.1 The n-sphere and its symmetries

In an earlier dis
ussion we looked in 
onsiderable detail at the 
onstru
tion of the 2-sphere,

des
ribed as the surfa
e X

2

+ Y

2

+ Z

2

= 1 in IR

3

. All of that dis
ussion 
an easily be

generalised to the 
ase of an n-dimensional sphere, de�ned by the surfa
e

X

a

X

a

= 1 ; (6.102)

in IR

n+1

, where now of 
ourse the index a is understood to be summed over (n+1) values.

For 
onvenien
e, we sometimes refer to the n-sphere as S

n

.
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Obviously mu
h of our previous dis
ussion of the symmetries 
arries over straightfor-

wardly to the 
ase of the n-sphere. The 
ondition (6.102) is invariant under rotations de�ned

by

X

0

a

=M

ab

X

b

; (6.103)

where M

ab

is an O(n+ 1) matrix satisfying

M

ab

M

a


= Æ

b


: (6.104)

In�nitesimally we 
an again write M

ab

= Æ

ab

+ A

ab

, where the in�nitesimal matrix A

ab

is

antisymmetri
. This matrix has

1

2

n(n + 1) independent 
omponents, so we 
on
lude that

the dimension of the group O(n+ 1) is

dim(O(n+ 1)) =

1

2

n (n+ 1) : (6.105)

By the dimension of the group, we mean the number of 
ontinuous parameters needed to

spe
ify a group element; we saw for O(3) that the answer was 3. As in the 
ase of O(3), the

group elements divide into those that have determinant +1, and those that have determinant

�1. The former 
orrespond to pure rotations in IR

n+1

, while the latter 
orrespond to

rotations together with a re
e
tion. Sin
e the identity element obviously has determinant

+1 it follows that all the in�nitesimal transformations must be 
ontained in SO(n+1) too.

It would be quite 
ompli
ated to generalise the spheri
al polar 
oordinates that we used

on S

2

to the 
ase of S

n

, but in fa
t for many purposes we 
an perfe
tly well just use the

Cartesian 
oordinates X

a

on IR

n+1

, together with the 
onstraint (6.102). For example, we


an write the in�nitesimal SO(n + 1) transformations as ÆX

a

= �

a

, where �

a

= A

ab

X

b

.

Thus we are led to the Killing ve
tors K

ab

, de�ned by

K

ab

� X

a

�

�X

b

�X

b

�

�X

a

; (6.106)

where the ab indi
es here are labels, indi
ating whi
h Killing ve
tor we mean. By 
onstru
-

tion we have

1

2

n(n+ 1) Killing ve
tors, sin
e K

ab

= �K

ba

. This is the 
orre
t number for

the SO(n+1) symmetry of the n-sphere. If we spe
ialise to the 2-sphere, it is easy to verify

that the three Killing ve
tors K

12

, K

13

and K

23

de�ned by (6.106) in this 
ase are just the

same, after the 
hange to spheri
al polar 
oordinates, as the Killing ve
tors (6.32) that we

derived previously.

Noti
e that the Killing ve
tors (6.106) are nothing but the angular momentum operators

in (n+1)-dimensional Eu
lidean spa
e. In 3 dimensions we would more 
ommonly use the
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totally-antisymmetri
 epsilon tensor �

ab


to re-express the angular momentum operators in

terms of a ve
tor index:

L

a

=

1

2

�

ab


K

b


= �

ab


X

b

�

�X




: (6.107)

Observe, though, that it is a very spe
ial feature of 3 dimensions that one 
an repla
e

an antisymmetri
 2-index quantity like K

ab

by a ve
tor. In higher dimensions, where the


orresponding totally-antisymmetri
 epsilon tensor has more indi
es, one 
annot turn a 2-

index antisymmetri
 tensor into a tensor with fewer indi
es. In fa
t this serves to emphasise

that in a general dimension one should think of rotations as o

urring in planes, rather than

about axes. It is a 
oin
iden
e of 3 dimensions that a rotation in the (x; y) plane 
an also

be thought of as a rotation about the z axis.

6.5.2 Spheri
al Harmoni
s

When one �rst meets the spheri
al harmoni
s on the 2-sphere, it is generally in the 
ontext of

performing a separation of variables in Lapla
e's equation or the wave equation, when using

spheri
al polar 
oordinates. In fa
t we just re-derived the expression for this Lapla
ian in

the previous se
tion, in (6.101). After a standard separation of variables in whi
h a fun
tion

 (r; �; �) is written as

 (r; �; �) = R(r)Y (�; �) ; (6.108)

Lapla
e's equation r

2

 = 0 be
omes

1

R

d

dr

�

r

2

dR

dr

�

+

1

Y

r

2

S

2

Y = 0 ; (6.109)

where r

2

S

2

is the operator appearing in the large square bra
kets in (6.101), namely

r

2

S

2

=

1

sin �

�

��

�

sin �

�

��

�

+

1

sin

2

�

�

2

��

2

: (6.110)

In fa
t this operator is pre
isely the Lapla
ian for the unit 2-sphere, as may easily be 
he
ked

by using our general formula (6.97), with the metri
 ds

2

= d�

2

+ sin

2

� d�

2

. Introdu
ing a

separation 
onstant � in the usual way, one is led from (6.109) to 
onsider the equation

�r

2

S

2

Y (�; �) = �Y (�; �) : (6.111)

This is the equation that determines the spheri
al harmoni
s.

A standard way to solve for the spheri
al harmoni
s is to write out the S

2

Lapla
ianr

2

S

2

expli
itly using (6.110), and perform a further separation of variables by writing Y (�; �) =

147



P (�)�(�). This introdu
es another separation 
onstant m

2

, an one is left to solve the

equations

sin �

d

d�

�

sin �

dP

d�

�

+ (� sin

2

� �m

2

)P = 0 ;

d

2

�

d�

2

+m

2

� = 0 : (6.112)

The latter has solutions of the form e

im�

, and to get the proper periodi
ity under 
omplete

rotations � �! � + 2� on the sphere, we dedu
e that m must be an integer. After letting

x = 
os � the �rst equation be
omes the generalised Legendre equation,

d

dx

�

(1� x

2

)

dP

dx

�

+

�

��

m

2

1� x

2

�

P = 0 : (6.113)

After a 
onsiderable labour, involving, for example, a 
areful study of the solutions for this

equation obtained as a series expansion (dis
ussed at length in Part I of the 
ourse), one


on
ludes that for the fun
tions P (�) to be regular at � = 0 and � (the north and south

poles of the sphere), the separation 
onstant � must be of the form � = ` (` + 1), where `

is an integer, and �` � m � `. Thus after a rather involved 
hain of argument, one arrives

at the spheri
al harmi
s Y

`m

(�; �) being the 
omplet set of regular eigenfun
tions of the

Lapla
ian r

2

S

2

on S

2

, with

�r

2

S

2

Y

`m

= ` (`+ 1)Y

`m

: (6.114)

Of 
ourse one has the feature that sin
e m does not appear in the expression for the

eigenvalues, there is a (2` + 1)-fold degenera
y for the spheri
al harmoni
s with a given

value of `, sin
e m 
an take any of the integer values between �` and +`.

This traditional approa
h to 
onstru
ting the spheri
al harmoni
s is a rather 
al
ula-

tional one, whi
h provides very little group-theoreti
 insight into what is going on. We are

in fa
t now in a position to give a mu
h simpler, and more elegant, 
onstru
tion of the

spheri
al harmoni
s, whi
h provides us with a rather 
lear pi
ture of them as representa-

tions of the symmetry group SO(3) of the 2-sphere. In fa
t it is just as easy to 
onstru
t

the spheri
al harmoni
s on all the spheres S

n

, for arbitrary dimension n, so there is that

advantage too.

We have des
ribed the unit n-sphere as the surfa
e X

a

X

a

= 1 in IR

n+1

. Let us write

the metri
 on the unit n-sphere as d


2

. It is evident that this is related to the Cartesian

metri
 ds

2

on IR

n+1

by

ds

2

= dr

2

+ r

2

d


2

; (6.115)

where X

a

X

a

= r

2

. This is 
lear, if you think about how we would measure distan
es in

IR

n+1

if it were written in \hyperspheri
al polar 
oordinates," r and y

�

, where y

�

represent
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the set of angular that one would use to parameterise points on the unit n-sphere. The

square of the distan
e between two in�nitesimally separated points in IR

n+1

is therefore the

sum of the square of the radial-
oordinate separation dr, and the square of the distan
e in

the surfa
e of the sphere that separates the two points. Sin
e d


2

is the metri
 on the unit

sphere, the distan
e on the sphere of radius r, where the two points are lo
ated, will be

s
aled by the fa
tor r. It is easy to see that (6.115) redu
es to familiar 
ases if we 
onsider

IR

2

and IR

3

, sin
e the metri
s on the unit 1-sphere and 2-sphere are just

1-sphere : d


2

= d�

2

;

2-sphere : d


2

= d�

2

+ sin

2

� d�

2

: (6.116)

Lu
kily we don't ever need to de�ne the angular 
oordinates on S

n

expli
itly, in order to

solve for the spheri
al harmoni
s. We 
an just let them be 
alled y

�

, with 1 � � � n, but we

don't need to de�ne how they are related to the Cartesian 
oordinates X

a

in IR

n+1

. (One


an usefully have in mind, though, the pi
ture that they will be de�ned very analogously

to the way spheri
al polar 
oordinates are related to the (X;Y;Z) 
oordinates on IR

3

.) The

metri
 on the unit n-sphere 
an then be written as

d


2

= h

��

dy

�

dy

�

: (6.117)

The full set of (n+1) hyperspheri
al 
oordinates on IR

n+1

will be (r; y

�

). Let us 
all these

hyperspheri
al 
oordinates x

i

, with i running from 0 to n:

x

0

� r ; x

�

� y

�

: (6.118)

Now, using (6.117), the metri
 (6.115) on IR

n+1

is

ds

2

= dr

2

+ r

2

h

��

dy

�

dy

�

: (6.119)

Clearly therefore the determinant g of this metri
 is given by

g = r

n

h ; (6.120)

where h is the determinant of the metri
 h

��

on the unit n-sphere. Plugging into our

general expression (6.97) for the Lapla
ian, we therefore �nd that in these hyperspheri
al

polar 
oordinates, the Lapla
ian on IR

n+1

is given by

r

2

R

n+1

=

1

r

n

�

�r

�

r

n

�

�r

�

+

1

r

2

r

2

S

n

; (6.121)

where

r

2

S

n

�

1

p

h

�

�y

�

�

p

hh

��

�

�y

�

�

(6.122)
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is the Lapla
ian on the unit n-sphere. (The spe
ial 
ases for n = 1 and n = 2 appear in our

examples (6.98) and (6.101) that we looked at previously.)

Having obtained this relation between the Lapla
ians on IR

n+1

and S

n

, the problem

of 
onstru
ting the spheri
al harmoni
s is almost solved. First, we introdu
e the following

fun
tions 	 on IR

n+1

:

	(X) = T

a

1

a

2

���a

`

X

a

1

X

a

2

� � �X

a

`

; (6.123)

where T

a

1

a

2

���a

`

is an `-index 
onstant tensor in IR

n+1

whi
h is 
ompletely arbitrary ex
ept

for satisfying the following two 
onditions:

(1) T

a

1

a

2

���a

`

is totally symmetri
 in all its indi
es.

(2) The tensor T is totally tra
eless, in the sense that the 
ontra
tion of any pair of indi
es

on T

a

1

a

2

���a

`

gives zero:

Æ

a

1

a

1

T

a

1

a

2

���a

`

= 0 ; et
. : (6.124)

Clearly 
ondition (1) is simply making sure that we eliminate all the \redundant bag-

gage" in T

a

1

a

2

���a

`

. Sin
e it appears in (6.123) 
ontra
ted onto the totally symmetri
al prod-

u
t X

a

1

X

a

2

� � �X

a

`

, it is obvious that any part of T

a

1

a

2

���a

`

that was not totally symmetri
al

in the indi
es would give no 
ontribution anyway.

Condition (2) serves a di�erent purpose. It implies that if we a
t with the IR

n+1

Lapla-


ian r

2

R

n+1

on 	, we shall get zero:

r

2

R

n+1

	 = 0 : (6.125)

This is be
ause from the de�nition of 	 in (6.123), we shall 
learly have

�	

�X

a

= T

aa

2

���a

`

X

a

2

� � �X

a

`

+ T

a

1

a���a

`

X

a

1

X

a

3

� � �X

a

`

+ � � � T

a

1

a

2

���a

`

X

a

1

X

a

2

� � �X

a

`�1

= ` T

aa

2

���a

`

X

a

2

� � �X

a

`

; (6.126)

(all the ` terms are equal, be
ause of the total symmetry). A
ting with another derivative,

we therefore get

�

2

	

�X

a

�X

b

= ` (`� 1)T

aba

3

���a

`

X

a

3

� � �X

a

`

: (6.127)

(This time, we have immediately used the symmetry of T to 
olle
t the (`� 1) terms that

appear from the se
ond di�erentiation together. Now we see that the IR

n+1

Lapla
ian a
ting

on 	 gives zero:

r

2

R

n+1

	 =

�

2

	

�X

a

�X

a

= ` (`� 1) Æ

ab

T

aba

3

���a

`

X

a

3

� � �X

a

`

= 0 ; (6.128)
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by virtue of 
ondition (2) above.

Now, it only remains to make the following observation. Sin
e the fun
tion 	 de�ned

in (6.123) involes a produ
t of ` Cartesian 
oordinates X

a

, it is evident that it must be

expressible as

	(X) = r

`

 (y) ; (6.129)

where y represents the angular 
oordinates y

�

on the unit n-sphere, and  (y) is independent

of r. Again, it is helpful to have in mind the IR

3

example here, where we have

X = r sin � 
os� ; Y = r sin � sin� ; Z = r 
os � : (6.130)

Finally, sin
e we have established that the IR

n+1

Lapla
ian annihilates 	 we simply have

to substitute it into (6.121) to dedu
e that

1

r

n

d

dr

�

r

n

dr

`

dr

�

 +

1

r

2

r

`

r

2

S

n

 = 0 : (6.131)

Hen
e we arrive at the 
on
lusion that  is an eigenfun
tion of the Lapla
ian on the unit

n-sphere, satisfying

�r

2

S

n

 = ` (`+ n� 1) : (6.132)

Noti
e that is we take n = 2, 
orresponding to the 2-sphere, we reprodu
e the familiar

eigenvalues ` (`+ 1).

Two issues remain to be dis
ussed here. The �rst is that we have 
ertainly produ
ed

some eigenfun
tions on the n-sphere by this method, but have we obtained them all? The

answer is yes, and it 
an be seen as follows. Clearly, any regular fun
tion on the unit

n-sphere 
an be smoothly extended out as a regular fun
tion on IR

n+1

. Conversely, if we


onsider the set of all regular fun
tions on IR

n+1

, they will proje
t down so as to provide

us with all possible regular fun
tions on S

n

. Now, the regular fun
tions f(X) on IR

n+1


an


ertainly be expanded in a Taylor series, whi
h will give a sum of terms of the form (6.123),

summed over all ` � 0 (without yet imposing the tra
elessness of 
ondition (2) above):

f(X) =

1

X

`=0

f

`

(X) ; (6.133)

where

f

`

(X) � T

a

1

a

2

���a

`

X

a

1

X

a

2

� � �X

a

`

; (6.134)

But the imposition of tra
elessness on T

a

1

a

2

���a

`

is just a matter of organising the terms in the

sum, sin
e a pure tra
e 
ontribution in the term f

`

(X) would 
orrespond to r

2

times a term

of the form f

`�2

(X). By the time we restri
ted to the unit n-sphere, by setting r = 1, this
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from f

`

term would therefore just be repeating what had already been 
onstru
ted in f

`�2

.

So from the viewpoint of 
onstru
ting regular fun
tions on the n-sphere, the imposition of

tra
elessness on the tensors T

a

1

a

2

���a

`

is just a matter of avoiding double-
ounting. Thus we


an be sure that our 
onstru
tion of s
alar eigenfun
tions of the Lapla
ian on S

n

has given

all all the eigenfun
tions. The fun
tions  , de�ned by (6.123) and (6.129), then, give the


omplete set of spheri
al harmoni
s on S

n

.

The se
ond issue that we must still address 
on
erns the degnera
ies of the eigenvalues,

or, equivalently, the multipli
ities of the eigenfun
tions  for a given value of the integer `.

This is easily worked out, sin
e it is just a matter of 
ounting how many independent 
om-

ponents the 
onstant tensor T

a

1

a

2

���a

`

has, bearing in mind the two 
onditions of symmetry

and tra
elessness that we imposed. It is easy to see that a totally-symmetri
 tensor with `

indi
es that ea
h run over (n+ 1) values has

(n+ 1)(n+ 2) � � � (n+ `)

`!

(6.135)

independents 
omponents. When we impose the tra
eless 
ondition on su
h a tensor, we

therefore impose a number of 
onditions equal to the number of independent 
omponents in

a similar tensor that has only (`� 2) indi
es. Thus the number of independent 
omponents

in our tensor T

a

1

a

2

���a

`

that is totally symmetri
 and tra
eless is

d

`

=

(n+ 1)(n+ 2) � � � (n+ `)

`!

�

(n+ 1)(n+ 2) � � � (n+ `� 2)

(`� 2)!

;

=

(n+ 1)(n+ 2) � � � (n+ `� 2)

`!

�

(n+ `� 1)((n) + `)� ` (`� 1)

�

;

=

n (n+ 1)(n+ 2) � � � (n+ `� 2)(2` + n� 1)

`!

; (6.136)

whi
h 
an be written as

d

`

=

(2`+ n� 1) (n+ `� 2)!

`! (n� 1)!

: (6.137)

This gives us the multipli
ity of the eigenfun
tions  with the spe
i�
 eigenvalue

�

`

= ` (`+ n� 1) (6.138)

that we found above. Noti
e that if we spe
ialise to the 
ase of the 2-sphere, equation

(6.137) redu
es to

2-sphere: d

`

= 2`+ 1 ; (6.139)

as we know it should.
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6.5.3 Irredu
ible Representations of SO(N)

The 
onstru
tion of the eigenfun
tions that we have obtained here, and the results for the

multipli
ities of the eigenvalues, have a deeper signi�
an
e than might at �rst be apparent.

What we have a
tually been doing here is 
onstru
ting irredu
ible representations of the the

symmetry groups SO(n+ 1) of the n-spheres. To be a bit more pre
ise, the sets of tensors

T

a

1

a

2

���a

`

that we have been using are themselves irredu
ible representations of SO(n+ 1).

More generally, one 
an 
onsider many di�erent 
lasses of 
onstant tensorH

a

1

a

2

���a

p

in IR

n+1

,

and asso
iate them with irredu
ible representations.

To make life a little simpler, let us talk about SO(N) rather than SO(n + 1). If we

begin with the tensor H

a

1

a

2

���a

p

in IR

N

, and make no symmetry or tra
elessness requirement

at all on it, then the number of independent 
omponents for su
h a tensor will simply be

N

p

, sin
e ea
h index 
an range over N values. This set of tensors with N

p


omponents

is a representation of SO(N), but it is not irredu
ible; we 
an divide it into smaller self-


ontained subsets of 
omponents. The rules for how su
h subdivisions 
an be made are very

simple. We 
an do anything as long as it respe
ts SO(N) 
ovarian
e. What this means is

that we have to treat the indi
es in a totally \demo
rati
" way, and we 
annot single out

any one index value, or subset of index values, for spe
ial treatment.

Let us take a 
on
rete example. Suppose we take a 2-index tensor H

ab

in IR

N

, whi
h

has N

2

independent 
omponents. Is this redu
ible, or is it already as irredu
ible as 
an

be? First, the sort of things we 
annot do is to pi
k an index value, say a = 1, and treat

that as spe
ial. We 
annot divide H

ab

into H

��

, H

1�

, H

�1

and H

11

, where 2 � � � N ,

and 
laim that we are de
omposing H

ab

into representations of SO(N); 
learly what we are

doing here is not 
ovariant from an SO(N) point of view. What we 
an do, however, is to

write H

ab

as the sum of its symmetri
 and antisymmetri
 parts:

H

ab

= S

ab

+A

ab

; (6.140)

where

S

ab

�

1

2

(H

ab

+H

ba

) ; A

ab

�

1

2

(H

ab

�H

ba

) : (6.141)

Now, we 
an 
ount the number of independent 
omponents in S

ab

, namely

1

2

N(N +1), and

the number of independent 
omponents in A

ab

, namely

1

2

N(N � 1). Of 
ourse the sum of

these two gives us ba
k the original number of 
omponents for the unrestri
ted tensor H

ab

:

1

2

(N(N + 1) +

1

2

N(N � 1) = N

2

: (6.142)
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Clearly the de
omposition in (6.140) is 
ompletely 
ovariant with respe
t to SO(N), sin
e

it is a tensorial equation, so it is a perfe
tly allowable subdivision for us to make.

Have we �nished? Not quite, be
ause there is one more thing we 
an do that respe
ts

the 
ovarian
e, and that is to extra
t the tra
e from the symmetri
 tensor S

ab

. Thus we


an write

S

ab

=

e

S

ab

+

1

N

S Æ

ab

; (6.143)

where S is the tra
e of S

ab

, namely

S � Æ

ab

S

ab

: ; (6.144)

and so by 
onstru
tion

e

S

ab

is tra
eless,

Æ

ab

e

S

ab

= 0 : (6.145)

Clearly (6.143) and (6.144) are both perfe
tly SO(N)-
ovariant equations; they transform


ovariantly under SO(N) rotations. (We are really ba
k to \kindergarten" Cartesian tensors

here!)

With this extra
tion of the tra
e, we have rea
hed the end of the road for the de
ompo-

sition of the original 2-index tensor H

ab

. In other words, we have found that it splits into

three irredu
ible representations of SO(N), with dimensions

dim(A

ab

) =

1

2

N(N � 1) ; dim(

e

S

ab

) =

1

2

(N � 1)(N + 2) ; dim(S) = 1 ; (6.146)

These are the dimensions of the 2-index antisymmetri
 representation, the 2-index symmet-

ri
 tra
eless representation, and the singlet of SO(N) respe
tively.

The original H

ab

representation is really to be thought of as the produ
t of two 1-

index representations. The 1-index, or ve
tor representation of SO(N) 
orresponds, as its

name implies, to taking an arbitrary 
onstant ve
tor H

a

in IR

n

. It is 
lear that we 
annot

subdivide this representation any further by means of any allowable 
ovariant rules, and so

it is an N -dimensional irredu
ible representation.

We have just met four di�erent irredu
ible representations of SO(N), and we have seen

that the following multipli
ation rule applies:

N �N =

1

2

N(N � 1) +

1

2

(N � 1)(N + 2) + 1 : (6.147)

What this is saying is that the produ
t of the ve
tor representation of SO(N) with itself

gives the three irredu
ible representations whose dimensions are listed on the right-hand

side. For example, in SO(3) we have

3� 3 = 3 + 5 + 1 : (6.148)
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Note that we use the underlining notation to indi
ate that we are talking about group

representation here.

27

One 
an 
ontinue the pro
ess of examining SO(N) tensors with more and more indi
es,

in ea
h 
ase making a 
ovariant de
omposition into the largest possible number of irredu
ible

pie
es, and thereby one builds up the 
omplete set of irredu
ible representations of SO(N).

It gets a little tri
kier than the examples we have looked at so far, on
e the tensor has

several indi
es. For example, 
onsider a 3-index tensor H

ab


. This 
ertainly 
ontains a

totally-symmetri
 pie
e, and a totally antisymmetri
 pie
e, but it also has more. This


an easily be seen by noting that sum of the independent 
omponents

1

6

N(N + 1)(N + 2)

of a symmetri
 3-index tensor and the independent 
omponents

1

6

N(N � 1)(N � 2) of an

antisymmetri
 3-index tensor does not add up to the N

3


omponents of an arbitrary 3-index

tensor. There is nothing deep or mysterious about this, of 
ourse, and it is really just an

exer
ise in symmetries and 
ombinatori
s to work out what the \extra" pie
es are. Of 
ourse

one also needs to extra
t all tra
e terms where appropriate, and 
ount those as separate

irredu
ible pie
es. A very hand diagrammati
 method, known as Young Tableaux, has been

developed for doing all this. However, it takes us beyond the s
ope of this introdu
tory

dis
ussion, so we shall leave it at that.

For our present purposes we don't need anything terribly exoti
, be
ause we saw that

in the 
ontru
tion of the spheri
al harmoni
s it was the totally symmetri
 and tra
eless

SO(n+ 1) tensors T

a

1

a

2

���a

`

that were relevant. What we have now learned from the above

dis
ussion is that these tensors are a
tually giving us irredu
ible representations of SO(n+

1), and we have already worked out their dimensions d

`

in (6.137). For the 2-sphere, this

be
ame d

`

= 2`+ 1, and so what we are seeing is that the spheri
al harmoni
s on S

2

o

ur

in the following irredu
ible representations of SO(3):

d

`

= 2`+ 1 = 1 ; 3 ; 5 ; 7 ; : : : (6.149)

As the dimension d

`

= 2` + 1 of the representation gets bigger, so, 
orrespondingly, does

the eigenvalue �

`

= ` (`+ 1).

For the higher-dimensional n-spheres the dimensions of the symmetri
 tra
eless irre-

du
ible SO(n + 1) representations be
ome a bit more interesting. For example, from d

`

given in (6.137) we have the following:

SO(4) : d

`

= (`+ 1)

2

= 1 ; 4; ; 9 ; 16 ; : : :

27

It also serves to show that we are doing profound mathemati
s here, and that we have not reverted to

the kindergarten arithmeti
 
lass!

155



SO(5) : d

`

=

1

6

(`+ 1)(`+ 2)(2`+ 3) = 1 ; 5 ; 14 ; 30 ; : : : (6.150)

SO(6) : d

`

=

1

12

(`+ 1)(`+ 2)

2

(`+ 3) = 1 ; 6 ; 20 ; 50 ; : : :

These examples are the �rst few representations of the spheri
al harmoni
s on the 3-sphere,

4-sphere and 5-sphere respe
tively.

We shall bring this 
ourse to a 
on
lusion with a brief dis
ussion of two topi
s related


losely to what has gone before. Ea
h deserves an entire 
ourse in its own right, so 
learly

what will be said here will be very sket
hy. The �rst of the topi
s is lo
al gauge symmetries,

and the se
ond is Riemann 
urvature, and general relativity.

6.6 Gauge Invarian
e and Covariant Derivative in Quantum Me
hani
s

We met the 
ovariant derivative in the 
ontext of the di�erentiation of general-
oordinate

tensors; it was ne
essary to introdu
e it in order to be able take derivatives of tensors and

get tensors again. Exa
tly the same basi
 notion of a 
ovariant derivative arises also in

other 
ontexts. Perhaps the simplest of these is in quantum me
hani
s, when we 
onsider

a wavefun
tion for a 
harged parti
le in the presen
e of an ele
tromagneti
 �eld.

Consider �rst the very simple situation of the S
hr�odinger equation for a free parti
le,

28

�

�h

2

2m

~

r

2

 = i �h

� 

�t

: (6.151)

Obviously we are free to multiply the wavefun
tion  by an arbitrary 
onstant 
omplex

number of modulus 1, without 
hanging anything physi
ally;

 �!  

0

= U  ; jU j = 1 : (6.152)

We 
an write su
h a 
onstant as

U = e

i�

; (6.153)

where � is a 
onstant real number, whi
h may as well be restri
ted to lie in the range

0 � � < 2�. The 
onstant U is a 1 � 1 unitary matrix, sin
e it satis�es U

y

U = 1. It is in

fa
t an element of the group U(1).

It was important in the transformation (6.152) that U should be a 
onstant, so that it


an pass freely through the derivatives in the S
hr�odinger equation (6.151), thus ensuring

that  

0

satis�es the same equation:

�

�h

2

2m

~

r

2

 

0

= i �h

� 

0

�t

: (6.154)

28

In this se
tion we shall be assuming that we are working in 
ate Eu
lidean spa
e, with Cartesian


oordinates, so

~

r here just means the usual gradient operator of Cartesian ve
tor analysis.
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Su
h 
onstant phase transformations are 
alled global U(1) transformations, or sometimes

rigid U(1) transformations.

Suppose, now, that we want to generalise the idea of the phase transformation (6.152), to

the 
ase where we allow the unit-phase quantity U to be dependent on the spatial position,

and on time. Su
h a transformation is then 
alled a lo
al U(1) transformation. Obviously

as it stands this will give trouble in the S
hr�odinger equation, sin
e now when we substitute

(6.152) into (6.151), we will pi
k up terms where the spa
e and time derivatives land on the

phase fa
tor U . These terms will prevent the transformed wavefun
tion  

0

from satisfying

the simple primed equation (6.154).

This dis
ussion should sound rather familiar. It is exa
tly like the situation we fa
ed with

derivatives of general-
oordinate tensors, where the derivative landing on the transformation

matrix �x

0

i

=�x

j

spoilt the tensor-transformation properties. Here, the problem is analogous,

namely that (�

i

 

0

) is not 
oming out to be the same as (�

i

 )

0

. In the 
ase of general-


oordinate tensor, we introdu
ed a 
ovariant derivative to solve the problem, and that is

exa
tly what we 
an do here too. Thus we shall de�ne

29

D

i

 � �

i

 �

i e

�h

A

i

 ; D

0

 �

� 

�t

+

i e

�h

� : (6.155)

We now require that A

i

and � should transform under the lo
al U(1) transformation, in

pre
isely su
h a way as to give us what we want, whi
h is

(D

i

 )

0

= U D

i

 ; (D

0

 )

0

= U D

0

 : (6.156)

Let us look at D

i

�rst. Writing out what we require for D

i

in (6.156) we have

D

0

i

 

0

= (�

i

�

i e

�h

A

0

i

) (U  ) ;

= U

�

�

i

 �

i e

�h

A

0

i

 + U

�1

(�

i

U) 

�

;

= U

�

�

i

�

i e

�h

A

i

�

 +

h

U

�1

(�

i

U) +

i e

�h

(A

i

�A

0

i

)

i

 ;

= U D

i

 

h

U

�1

(�

i

U) +

i e

�h

(A

i

�A

0

i

)

i

 : (6.157)

The �rst term on the bottom line is exa
tly what we want, so we must require that the quan-

tity in square bra
kets be zero. In other words, A

i

should have the following transformation

29

For now, the quantities A

i

and � are just a 3-ve
tor and a s
alar, introdu
ed for the purpose of allowing

us to make lo
al U(1) transformations. Any similarity to things that may be familiar from ele
tromagnetism

is entirely non-
oin
idental, but here we are going to derive ele
tromagetism from the requirement of lo
al

U(1) invarian
e.
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property under the lo
al U(1) transformation:

A

0

i

= A

i

�

i �h

e

U

�1

�

i

U : (6.158)

If we parameterise U in the following way,

U = e

i e�=�h

; (6.159)

where � is the lo
al parameter, then we see that (6.158) is nothing but

A

0

i

= A

i

+ �

i

� : (6.160)

In an identi
al fashion, we 
an derive the required lo
al U(1) transformation of the

fun
tion � in the 
ovariant time derivative D

0

in (6.155), from the se
ond equation in

(6.156). We �nd

�

0

= ��

��

�t

: (6.161)

We 
an re
ognise (6.160) and (6.161) as being pre
isely the gauge transformation rules

of the magneti
 ve
tor potential

~

A and the ele
trostati
 potential � of ele
trodynami
s:

~

A

0

=

~

A+

~

r� ; �

0

= ��

��

�t

: (6.162)

We have e�e
tively derived ele
tromagnetism, but purely from the 
onsiderations of lo
al

U(1) invarian
e in quantum me
hani
s.

The �nal step is to write out our new version of the S
hr�odinger equation, using the


ovariant derivative. Thus in (6.151) we repla
e the ordinary derivatives by 
ovariant deriva-

tives:

�

�h

2

2m

D

i

D

i

 = i �hD

0

 : (6.163)

It is now manifest, from the known 
ovarian
e properties of the transformations in (6.156),

that after performing an arbitrary lo
al U(1) transformation the S
hr�odinger equation

(6.163) will simply take the same form, but now with primes on  and the 
ovariant deriva-

tives. Note that (6.163) is nothing but

�

�h

2

2m

�

~

r�

i e

�h

~

A

�

2

 + e � = i �h

� 

�t

; (6.164)

whi
h is the S
hr�odinger equation for a 
harge parti
le in an ele
tromagneti
 �eld.
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6.7 Curvature, the Riemann Tensor, and General Relativity

We have seen how the Christo�el 
oone
tion �

i

jk

allows us to de�ne a 
ovariant derivative,

thereby permitting an extension of the idea that is familiar in Cartesian tensor analysis that

the derivative operator provides a mapping from tensors into new tensors. We have seen

also that the Christo�el 
onne
tion is non-vanishing not only for a metri
 on a 
urved spa
e

su
h as a sphere, but even for a 
at metri
 that happens to be expressed in a non-Cartesian


oordinate system, su
h as polar 
oordinates on the plane.

So, for example, if we start with the 
at metri
 on the plane written in Cartesian 
oor-

dinates, ds

2

= dx

2

+ dy

2

, and then make the standard transformation to polar 
oordinates,

we �nd that the originally-vanishing Christo�el 
onne
tion be
omes non-vanishing after the


oordinate transformation. The fa
t that this 
an happen is a re
e
tion of the non-tensorial

nature of the 
onne
tion. By 
ontrast, if a tensor were vanishing in one 
oordinate frame,

it would have to remain zero in all 
oordinate frames. This 
an be seen immediately from

its transformation law, (6.43).

How do we 
hara
terise the idea of whether the spa
e is intrinsi
ally 
urved, or not?

Of 
ourse one approa
h would be to take the given metri
 and try making 
oordinate

transformations in order to see whether it 
an be re-expressed as the 
at metri
 in some

Cartesian 
oordinate system. But that would be a very 
lumsy thing to do in general, and

the mere fa
t that one failed to �nd a 
oordinate transformation that did the job might

mean nothing more than that one had not tried hard enough. Besides, it would not be an

approa
h that would provide very mu
h insight into the stru
ture of the metri
, espe
ially

if it turned out that it was not merely 
at spa
e in a funny 
oordinate system.

It should 
ome as no surprise, in the light of the previous observations, that the way

to 
hara
terise the 
urvature of a spa
e is by means of a tensor quantity. The required

obje
t, 
alled the Riemann Tensor, has four indi
es, with 
ertain symmetry properties, and

is denoted by R

i

jk`

. If the metri
 is 
at then the Riemann tensor is zero. Sin
e it is a

tensor, this vanishing is unaltered under any general 
oordinate transformation, and so it

provides a genuinely 
oordinate-independent test for whether the metri
 is 
apable of being

transformed into the standard Cartesian metri
 by a suitable 
oordinate transformation.

At least as importantly, however, a non-vanishing Riemann tensor provides very useful

information about a spa
e that is 
urved.

How do we de�ne the Riemann tensor? It turns out that it 
an be 
onstru
ted by taking
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a derivative of the Christo�el 
onne
tion, in an appropriate way. Spe
i�
ally, it is given by

R

i

jk`

= �

k

�

i

j`

� �

`

�

i

jk

+ �

i

km

�

m

j`

� �

i

`m

�

m

jk

: (6.165)

Looking at this, it is not manifestly apparent that it should be a tensor at all. After

all, it is 
onstru
ted by taking partial derivatives of something that is itself not a tensor.

Remarkably, however, it turns out that this is a tensor. In prin
iple, it 
an be proven by the

time-honoured method of 
al
ulating it in a primed 
oordinate frame, using the knownm

transformation properties of �

i

and �

i

jk

, and showing that it is related to the 
omponents

in the original unprimed frame in the way it should be for a tensor. There is nothing


on
eptually diÆ
ult involved in 
he
king this, but it is somewhat tedious. We shall leave

it as an exer
ise for the interested reader.

The �rst thing to noti
e from (6.165) is that the Riemann tensor is indeed obviously

zero if we take g

ij

to be the 
at metri
 in Cartesian 
oordinates, g

ij

= Æ

ij

, sin
e already

that means that �

i

jk

= 0, as we saw before. Together with the knowledge that R

i

jk`

really

is a tesnor, this shows that R

i

jk`

= 0 for 
at spa
e in any 
oordinate system.

There are further tensor quantities that 
an be 
onstru
ed from the Riemann tesnor, by

making index 
ontra
tions. These therefore 
ontain less information than the full Riemann

tensor, but they are nevertheless of great importan
e. First, we 
an de�ne the Ri

i Tensor,

R

ij

= R

k

ikj

: (6.166)

One 
an show from the de�nition of the Riemann tensor that R

ij

is a
tually symmetri
 in

its two indi
es, R

ij

= R

ji

. By 
ontra
ting with the inverse metri
 we 
an also form a s
alar,


alled the Ri

i S
alar R, given by

R = g

ij

R

ij

: (6.167)

The Riemann tensor itself also has 
ertain symmetries. To state these, it is 
onvenient

we lower the �rst index, de�ning (in the standard way)

R

ijk`

= g

im

R

m

jk`

: (6.168)

The symmetries are then:

R

ijk`

= R

k`ij

= �R

jik`

= �R

ij`k

;

R

ijk`

+R

ik`j

+R

i`jk

= 0 ; (6.169)

all of whi
h 
an, with some algebra, be proven from the previous de�nitions. Thus R

ijk`

is

symmetri
 under the inter
hange of the �rst pair of indi
es with the se
ond pair, and it is
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antisymmetri
 under the ex
hange of the �rst two indi
es, and under the ex
hange of the

last two indi
es. It also has the 
y
li
 symmetri
 given in the se
ond line.

Let us 
onsider the 2-sphere, with the metri
 ds

2

= d�

2

+ sin

2

� d�

2

, as an example.

Taking the 
oordinates to be x

1

= �, x

2

= �, we have

g

ij

=

 

1 0

0 sin

2

�

!

; g

ij

=

 

1 0

0

1

sin

2

�

!

: (6.170)

Simple algebra using (6.80) leads to the following results for the 
omonents of the Christo�el


onne
tion:

�

1

11

= 0 ; �

1

12

= 0 ; �

1

22

= � sin � 
os � ;

�

2

11

= 0 ; �

2

12

= 
ot � ; �

2

22

= 0 : (6.171)

From the symmetries of the Riemann tensor given above, it follows that in two dimensions

there is only one independnet 
omponent, and one easily �nds that this is given by

R

1212

= sin

2

� : (6.172)

The Ri

i tensor R

ij

and Ri

i s
alar R then turn out to be

R

11

= 1 ; R

22

= sin

2

� ; R

12

= R

21

= 0 ; R = 2 : (6.173)

Noti
e that by 
omparing with (6.170), we see that the Ri

i tensor 
an be written as

R

ij

= g

ij

: (6.174)

Metri
s whose Ri

i tensors satisfy this type of equation, R

ij

= � g

ij

, are 
alled Einstein

Metri
s, and they are of great importan
e in mathemati
s and in theoreti
al physi
s.

We 
on
lude this se
tion with some remarks about one of the most important physi-


al appli
ations of the geometri
al theory of tensors that we have been studying, namely

Einstein's theory of General Relativity. This is the theory that des
ribes the phenomenon

of gravity, superseding the Newtonian theory of gravity. One of the 
ornerstones of gen-

eral relativity is the fa
t that the \for
e of gravity" is a frame-dependent 
on
ept, being

indistinguishable (by means of lo
al experiments) from the e�e
ts of a

eleration. Thus one


an, for example, always render the for
e of gravity vanishing at some point, by putting

oneself in a freely-falling frame (not ne
essarily a wise thing to do!). Conversely, one 
an

produ
e a gravitational for
e that is lo
ally indistinguishable from the for
e of gravity on
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the surfa
e of the earth, even out in the far rea
hes of spa
e, by turning on the ro
ket-motor

of a spa
e
raft so that is a

elerates at 32 feet per se
ond per se
ond.

30

In general relativity the four-dimensional Minkowsi spa
etime metri
 of spe
ial relativ-

ity is repla
ed by a more general four-dimensional spa
etime metri
. As in our previous

dis
ussions, in some 
ases this might be just a rewriting of the Minkowski metri
 after some


hange of 
oordinates. On the other hand, it might be a genuinly 
urved metri
. It should

perhaps 
ome as no surprise, in the light of previous remarks, that the \for
e of gravity"

is 
hara
terised by the Christo�el 
onne
tion �

i

jk

. The frame-dependen
e of the 
on
ept

of the gravitational for
e is now understandable, sin
e it is des
ribed by the non-tensorial

quantities �

i

jk

. For instan
e, in a small lo
al region any spa
e looks nearly like a pat
h

of 
at spa
e (think of a small region on the surfa
e of the earth, for example), and this

means that one 
an �nd a 
oordinate transformation in whi
h the metri
 be
omes like the

Minkowski metri
 at a point, and its �rst derivatives vanish at that same point. This implies

that in this 
oordinate system the Christo�el 
onne
tion vanishes at that point, and then

there is no \for
e of gravity." The 
oordinate system that one has pi
ked that does this job

is the \lo
al inertial frame" or \free-fall frame."

The pre
ise way in whi
h the Christo�el 
onne
tion des
ribes the \for
e of gravity" is as

follows. Consider the worldline of a parti
le that is a
ted on by no for
es other than gravity.

Assuming the parti
le is massive, we 
an use the elapse of proper time � , as measured in the

rest frame of the parti
le, to parameterise its path in spa
etime, x

i

= x

i

(�). The equation

that governs its motion, 
alled the Geodesi
 Equation, is then

d

2

x

i

d�

2

+ �

i

jk

dx

j

d�

dx

k

d�

= 0 : (6.175)

This equation is the analogue in general relativity of Newton's se
ond law of motion, applied

to a massive parti
le in a gravitational �eld. In the Newtonian limit of weak gravitational

�elds and low velo
ities, the �rst term in the geodesi
 equation be
omes the a

eleration

30

These evident fa
ts, whi
h are su
h important foundations in General Relativity, are still, 
uriously,

often denied by the \old guard" of adherents to the Newtonian s
hool of thought. Thus one still frequently

en
ounters, espe
ially in undergraduate me
hani
s 
lasses, the 
ounter-Einsteinian assertion that \
entrifugal

for
es are �
titious." The trouble stems from an uneasiness, in the old Newtonian pi
ture, with the modern


on
ept that all 
oordinate frames should be equally valid. Thus \inertial frames" were singled out as the

only ones that were kosher, and so for
es resulting from a

eleration relative to these were deemed to be

�
titious. It is interesting to note that the Newtonian and the Einsteinian physi
ist will disagree on what


onstitutes an inertial frame. A Newtonian physi
ist will say that an observer standing in a laboratory

on the earth is in an inertial frame, whereas the Einsteinian physi
ist will say that an observer who is in

free-fall, having jumped out of the laboratory window, is in a (lo
al) inertial frame.
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of the parti
le, while in the se
ond term the 
omponents �

a

00

of the Christo�el 
onne
tion

be
ome the dominant ones, where 0 represents the time dire
tion, and the a index ranges

over the three spatial dire
tions. In fa
t in the Newtonian limit, in Cartesian 
oordinates,

these 
omponents are given by �

a

00

= �

a

�, where � is the Newtonian gravitational po-

tential. Furthermore, at low velo
ities we have dx

0

=d� � 1, jdx

a

=d� j << 1 (we use units

where the speed of light is 
 = 1), and so the geodesi
 equation limits to

d

2

x

a

dt

2

= �

��

�x

a

; (6.176)

whi
h is Newton's se
ond law for the motion of a parti
le in a gravitational �eld. Even in the

Newtonian limit, however, we see the radi
ally di�erent interpretations of the Newtonian

and the Einsteinian viewpoints. The Newtonian physi
ist will only interpret the right-hand

side of (6.176) as a gravitational for
e if he has �rst 
he
ked to see that the 
oordinate

system is one that is deemed to \inertial" in the Newtonian sense. By 
ontrast, the general

relativist pla
es all 
oordinate systems on a demo
rati
 footing, and universally interprets

(6.175) as the equation des
ribing the motion of the parti
le in the gravitational �eld,

without any preferen
e for one 
oordinate system over another.

Although we 
an make gravity vanish \at a point," we 
annot in general make it vanish

everywhere by 
hoi
e of 
oordinate frame, ex
ept in the spe
ial 
ase of a 
at spa
etime.

This is like the di�eren
e between the 
at 2-plane and the 2-sphere; lo
ally, they both look

like bits of 
at spa
e, but larger ex
ursions reveal that the plane is 
at, while the sphere is


urved. In general relativity the 
urvature of spa
etime is brought about by the presen
e

of matter, or other disturban
es (su
h as gravitational waves). The pre
ise way in whi
h

this happens is des
ribed by the Einstein �eld equations, whi
h read

R

ij

�

1

2

Rg

ij

= 8� GT

ij

: (6.177)

The quantities on the left-hand side are the Ri

i tensor R

ij

and Ri

i s
alar R of the spa
e-

time metri
 g

ij

. On the right-hand side T

ij

is the energy-momentum tensor of the matter,

whi
h des
ribes the distribution of energy, and momentum, in the spa
etime. Finally, G is

Newton's 
onstant.

31

These �eld equations are the gravitational analogue of the Maxwell

�eld equations

�

�

F

��

= �4� J

�

; (6.178)

(or

~

r �

~

E = 4� �,

~

r�

~

B� �

~

E=�t = 4�

~

J if you prefer). Just as the Maxwell �eld equations

des
ribe how the distribution of 
harges and 
urrents generates ele
tromagneti
 �elds, so

31

So there is still a pla
e for Newton in the New Order!
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the Einstein �eld equations des
ribe how the distribution of masses and momentum 
ux

generate 
urvature. Unlike ele
trodynami
s, however, the general theory of relativity is

a non-linear theory, whi
h makes it 
onsiderably more 
ompli
ated and subtle. Between

them, the geodesi
 equation (6.175) whi
h tells matter how to respond to the geometry, and

the Einstein equation (6.177) whi
h tells geometry how to respond to the matter, 
onstitute

one of the most elegant and intriguing of our fundamental physi
al laws.
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